噜噜噜噜私人影院,少妇人妻综合久久中文字幕888,AV天堂永久资源网,5566影音先锋

歡迎來(lái)到優(yōu)發(fā)表網(wǎng)

購(gòu)物車(chē)(0)

期刊大全 雜志訂閱 SCI期刊 期刊投稿 出版社 公文范文 精品范文

高中數(shù)學(xué)總結(jié)范文

時(shí)間:2023-03-10 14:58:18

序論:在您撰寫(xiě)高中數(shù)學(xué)總結(jié)時(shí),參考他人的優(yōu)秀作品可以開(kāi)闊視野,小編為您整理的7篇范文,希望這些建議能夠激發(fā)您的創(chuàng)作熱情,引導(dǎo)您走向新的創(chuàng)作高度。

高中數(shù)學(xué)總結(jié)

第1篇

關(guān)鍵詞:高中數(shù)學(xué) 教學(xué)總結(jié)

一、高中數(shù)學(xué)與初中數(shù)學(xué)特點(diǎn)的變化。

1、數(shù)學(xué)語(yǔ)言在抽象程度上突變。

不少學(xué)生反映,集合、映射等概念難以理解,覺(jué)得離生活很遠(yuǎn)。確實(shí),初、高中的數(shù)學(xué)語(yǔ)言有著顯著的區(qū)別。初中的數(shù)學(xué)主要是以形象、通俗的語(yǔ)言方式進(jìn)行表達(dá)。而高一數(shù)學(xué)一下子就觸及抽象的集合語(yǔ)言、邏輯運(yùn)算語(yǔ)言以及以后要學(xué)習(xí)到的函數(shù)語(yǔ)言、空間立體幾何等。

2、思維方法向理性層次躍遷。

高一學(xué)生產(chǎn)生數(shù)學(xué)學(xué)習(xí)障礙的另一個(gè)原因是高中數(shù)學(xué)思維方法與初中階段大不相同。初中階段,很多老師為學(xué)生將各種題建立了統(tǒng)一的思維模式,如解分式方程分幾步,因式分解先看什么,再看什么,即使是思維非常靈活的平面幾何問(wèn)題,也對(duì)線段相等、角相等、、、、、、分別確定了各自的思維套路。因此,初中學(xué)習(xí)中習(xí)慣于這種機(jī)械的,便于操作的定勢(shì)方式,而高中數(shù)學(xué)在思維形式上產(chǎn)生了很大的變化,正如上節(jié)所述,數(shù)學(xué)語(yǔ)言的抽象化對(duì)思維能力提出了高要求。當(dāng)然,能力的發(fā)展是漸進(jìn)的,不是一朝一夕的事,這種能力要求的突變使很多高一新生感到不適應(yīng),故而導(dǎo)致成績(jī)下降。高一新生一定要能從經(jīng)驗(yàn)型抽象思維向理論型抽象思維過(guò)渡,最后還需初步形成辯證形思維

3、知識(shí)內(nèi)容的整體數(shù)量劇增

高中數(shù)學(xué)與初中數(shù)學(xué)又一個(gè)明顯的不同是知識(shí)內(nèi)容的“量”上急劇增加了,單位時(shí)間內(nèi)接受知識(shí)信息的量與初中相比增加了許多,輔助練習(xí)、消化的課時(shí)相應(yīng)地減少了。這就要求第一,要做好課后的復(fù)習(xí)工作,記牢大量的知識(shí);第二,要理解掌握好新舊知識(shí)的內(nèi)在聯(lián)系,使新知識(shí)順利地同化于原有知識(shí)結(jié)構(gòu)之中;第三,因知識(shí)教學(xué)多以零星積累的方式進(jìn)行的,當(dāng)知識(shí)信息量過(guò)大時(shí),其記憶效果不會(huì)很好。因此要學(xué)會(huì)對(duì)知識(shí)結(jié)構(gòu)進(jìn)行梳理,形成板塊結(jié)構(gòu),如表格化,使知識(shí)結(jié)構(gòu)一目了然;類化,由一例到一類,由一類到多類,由多類到統(tǒng)一;使幾類問(wèn)題同構(gòu)于同一知識(shí)方法第四,要多做總結(jié)、歸類,建立知識(shí)結(jié)構(gòu)網(wǎng)絡(luò)。

二、不良的學(xué)習(xí)狀態(tài)。

1、學(xué)習(xí)習(xí)慣因依賴心理而滯后。

初中生在學(xué)習(xí)上的依賴心理是很明顯的。第一,為提高分?jǐn)?shù),初中數(shù)學(xué)教學(xué)中教師將各種題型都一一羅列,學(xué)生依賴于教師為其提供套用的“模子”;第二,家長(zhǎng)望子成龍心切,回家后輔導(dǎo)也是常事。升入高中后,教師的教學(xué)方法變了,套用的“模子”沒(méi)有了,家長(zhǎng)輔導(dǎo)的能力也跟不上了,由“參與學(xué)習(xí)”轉(zhuǎn)入“督促學(xué)習(xí)”。許多同學(xué)進(jìn)入高中后,還象初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒(méi)有掌握學(xué)習(xí)的主動(dòng)權(quán)。表現(xiàn)在不定計(jì)劃,課前沒(méi)有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒(méi)聽(tīng)到“門(mén)道”。

2、思想松懈。有些同學(xué)把初中的那一套思想移植到高中來(lái)。他們認(rèn)為自已在初一、二時(shí)并沒(méi)有用功學(xué)習(xí),只是在初三臨考時(shí)才發(fā)奮了一、二個(gè)月就輕而易舉地考上了高中,而且有的可能還是重點(diǎn)中學(xué)里的重點(diǎn)班,因而認(rèn)為讀高中也不過(guò)如此,高一、高二根本就用不著那么用功,只要等到高三臨考時(shí)再發(fā)奮一、二個(gè)月,也一樣會(huì)考上一所理想的大學(xué)的。存有這種思想的同學(xué)是大錯(cuò)特錯(cuò)的。因?yàn)樵凇痢痢量梢哉f(shuō)是普及了高中教育,因此中考的題目并不具有很明顯的選撥性,同學(xué)們都很容易考得高分。但高考就不同了,目前我們國(guó)家還不可能普及高等教育,高等教育可以說(shuō)還是屬于一種精英教育,只能選撥一些成績(jī)好的同學(xué)去讀大學(xué),因此高考的題目具有很強(qiáng)的選撥性,如果心存僥幸,想在高三時(shí)再發(fā)奮一、二個(gè)月就考上大學(xué),那到頭來(lái)你會(huì)后悔莫及的。同學(xué)們不妨打聽(tīng)打聽(tīng)現(xiàn)在的高三,有多少同學(xué)就是因?yàn)楦咭?、二不努力學(xué)習(xí),現(xiàn)在臨近高考了,發(fā)現(xiàn)自己缺漏了很多知識(shí)而而焦急得到處請(qǐng)家教。

3、學(xué)不得法。老師上課一般都要講清知識(shí)的來(lái)龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒(méi)能專心聽(tīng)課,對(duì)要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、定理一知半解,機(jī)械模仿,死記硬背,還有些同學(xué)晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結(jié)果是事倍

功半,收效甚微。

4、不重視基礎(chǔ)。一些“自我感覺(jué)良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書(shū)寫(xiě),但對(duì)難題很感興趣,以顯示自己的“水平”,好高騖遠(yuǎn)。到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。

5、進(jìn)一步學(xué)習(xí)條件不具備。高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。有的內(nèi)容還是初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,就必然會(huì)跟不上高中學(xué)習(xí)的要求。

三、科學(xué)地進(jìn)行學(xué)習(xí)。

高中學(xué)生僅僅想學(xué)是不夠的,還必須“會(huì)學(xué)”,要講究科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,才能變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),才能提高學(xué)習(xí)成績(jī)。

1、培養(yǎng)良好的學(xué)習(xí)習(xí)慣。反復(fù)使用的方法將變成人們的習(xí)慣。什么是良好的學(xué)習(xí)習(xí)慣?良好的學(xué)習(xí)習(xí)慣包括制定計(jì)劃、課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。

2、循序漸進(jìn),防止急躁。

有的同學(xué)貪多求快,囫圇吞棗。有的同學(xué)想靠幾天“沖刺”一蹴而就,有的取得一點(diǎn)成績(jī)便洋洋自得,遇到挫折又一蹶不振。同學(xué)們要知道,學(xué)習(xí)是一個(gè)長(zhǎng)期的鞏固舊知、發(fā)現(xiàn)新知的積累過(guò)程,決非一朝一夕可以完成的。為什么高中要學(xué)三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績(jī),其中一個(gè)重要原因是他們的基本功扎實(shí),他們的閱讀、書(shū)寫(xiě)、運(yùn)算技能達(dá)到了熟練程度。

第2篇

高中數(shù)學(xué)難度更大,難度在于它的深度和廣度,但如果能理清思路,抓住重點(diǎn),多實(shí)踐,變?cè)覟楸┚⒎遣豢赡?。高中?shù)學(xué)知識(shí)點(diǎn)總結(jié)有哪些你知道嗎?共同閱讀高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),請(qǐng)您閱讀!

高中數(shù)學(xué)知識(shí)點(diǎn)匯總1.必修課程由5個(gè)模塊組成:

必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對(duì)數(shù)函數(shù))

必修2:立體幾何初步、平面解析幾何初步。

必修3:算法初步、統(tǒng)計(jì)、概率。

必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

必修5:解三角形、數(shù)列、不等式。

以上所有的知識(shí)點(diǎn)是所有高中生必須掌握的,而且要懂得運(yùn)用。

選修課程分為4個(gè)系列:

系列1:2個(gè)模塊

選修1-1:常用邏輯用語(yǔ)、圓錐曲線與方程、空間向量與立體幾何。

選修1-2:統(tǒng)計(jì)案例、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)、框圖

系列2:3個(gè)模塊

選修2-1:常用邏輯用語(yǔ)、圓錐曲線與方程、空間向量與立體幾何

選修2-2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)

選修2-3:計(jì)數(shù)原理、隨機(jī)變量及其分布列、統(tǒng)計(jì)案例

選修4-1:幾何證明選講

選修4-4:坐標(biāo)系與參數(shù)方程

選修4-5:不等式選講

2.重難點(diǎn)及其考點(diǎn):

重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

難點(diǎn):函數(shù),圓錐曲線

高考相關(guān)考點(diǎn):

1.集合與邏輯:集合的邏輯與運(yùn)算(一般出現(xiàn)在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件

2.函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用

3.數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項(xiàng)、求和

4.三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用

5.平面向量:初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用

6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用

7.直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問(wèn)題、圓錐曲線的應(yīng)用

9.直線、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

10.排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用

11.概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布

12.導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

13.復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算

高中數(shù)學(xué)學(xué)習(xí)要注意的方法1.用心感受數(shù)學(xué),欣賞數(shù)學(xué),掌握數(shù)學(xué)思想。

有位數(shù)學(xué)家曾說(shuō)過(guò):數(shù)學(xué)是用最小的空間集中了的理想。

2.要重視數(shù)學(xué)概念的理解。

高一數(shù)學(xué)與初中數(shù)學(xué)的區(qū)別是概念多并且較抽象,學(xué)起來(lái)“味道”同以往很不一樣,解題方法通常就來(lái)自概念本身。學(xué)習(xí)概念時(shí),僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價(jià)的表達(dá)方式。例如,為什么函數(shù)y=f(x)與y=f-1(x)的圖象關(guān)于直線y=x對(duì)稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什么當(dāng)f(x-1)=f(1-x)時(shí),函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,而y=f(x-1)與y=f(1-x)的圖象卻關(guān)于直線x=1對(duì)稱,不透徹理解一個(gè)圖象的對(duì)稱性與兩個(gè)圖象的對(duì)稱關(guān)系的區(qū)別,兩者很容易混淆。

3.對(duì)數(shù)學(xué)學(xué)習(xí)應(yīng)抱著二個(gè)詞――“嚴(yán)謹(jǐn),創(chuàng)新”,所謂嚴(yán)謹(jǐn),就是在平時(shí)訓(xùn)練的時(shí)候,不能一絲馬虎,是對(duì)就是對(duì),錯(cuò)了就一定要承認(rèn),要找原因,要改正,萬(wàn)不可以抱著“好像是對(duì)的”的心態(tài),蒙混過(guò)關(guān)。

至于創(chuàng)新呢,要求就高一點(diǎn)了,要求在你會(huì)解決此問(wèn)題的情況下,你還會(huì)不會(huì)用另一種更簡(jiǎn)單,更有效的方法,這就需要扎實(shí)的基本功。平時(shí),我們看到一些人,做題時(shí)從不用常規(guī)方法,總愛(ài)自己創(chuàng)造一些方法以“偏方”解題,雖然有時(shí)候也能讓他撞上一些好的方法,但我認(rèn)為是不可取的。因?yàn)槟闶紫缺仨殞W(xué)會(huì)用常規(guī)的方法,在此基礎(chǔ)上你才能創(chuàng)新,你的創(chuàng)新才有意義,而那些總是片面“追求”新方法的人,他們的思維有如空中樓閣,必然是曇花一現(xiàn)。當(dāng)然我們要有創(chuàng)新意識(shí),但是,創(chuàng)新是有條件的,必須有扎實(shí)的基礎(chǔ),因此我想勸一下那些基礎(chǔ)不牢,而平時(shí)總愛(ài)用“偏方”的同學(xué)們,該是清醒一下的時(shí)候了,千萬(wàn)不要繼續(xù)鉆那可憐的牛角尖啊!

4.建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,習(xí)慣是經(jīng)過(guò)重復(fù)練習(xí)而鞏固下來(lái)的穩(wěn)重持久的條件反射和自然需要。

建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識(shí)面和培養(yǎng)自己再學(xué)習(xí)能力。

5.多聽(tīng)、多作、多想、多問(wèn):此“四多”乃培養(yǎng)數(shù)學(xué)能力的要訣,“聽(tīng)”就是在“學(xué)”,作是“練習(xí)”(作課本上的習(xí)題或其它問(wèn)題),也就是把您所學(xué)的,應(yīng)用到解決問(wèn)題上。

“聽(tīng)”與“作”難免會(huì)碰到疑難,那就要靠“想”的功夫去打通它,假如還想不通,解不來(lái)就要“問(wèn)”――問(wèn)同學(xué)、問(wèn)老師或參考書(shū),務(wù)必將疑難解決為止。這就是所謂的學(xué)問(wèn):既學(xué)又問(wèn)。

6.要有毅力、要有恒心:基本上要有一個(gè)認(rèn)識(shí):數(shù)學(xué)能力乃是長(zhǎng)期努力累積的結(jié)果,而不是一朝一夕之功所能達(dá)到的。

您可能花一天或一個(gè)晚上的功夫把某課文背得滾瓜爛熟,第二天考背誦時(shí)對(duì)答如流而獲高分,也有可能花了一兩個(gè)禮拜的時(shí)間拼命學(xué)數(shù)學(xué),但到頭來(lái)數(shù)學(xué)可能還考不好,這時(shí)候您可不能氣餒,也不必為花掉的時(shí)間惋惜。

高中數(shù)學(xué)復(fù)習(xí)的五大要點(diǎn)分析一、端正態(tài)度,切忌浮躁,忌急于求成

在第一輪復(fù)習(xí)的過(guò)程中,心浮氣躁是一個(gè)非常普遍的現(xiàn)象。主要表現(xiàn)為平時(shí)復(fù)習(xí)覺(jué)得沒(méi)有問(wèn)題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因?yàn)椋?/p>

(1)對(duì)復(fù)習(xí)的知識(shí)點(diǎn)缺乏系統(tǒng)的理解,解題時(shí)缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習(xí)著重對(duì)基礎(chǔ)知識(shí)點(diǎn)的挖掘,數(shù)學(xué)老師一定都會(huì)反復(fù)強(qiáng)調(diào)基礎(chǔ)的重要性。如果不重視對(duì)知識(shí)點(diǎn)的系統(tǒng)化分析,不能構(gòu)成一個(gè)整體的知識(shí)網(wǎng)絡(luò)構(gòu)架,自然在解題時(shí)就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。

(2)復(fù)習(xí)的時(shí)候心不靜。心不靜就會(huì)導(dǎo)致思維不清晰,而思維不清晰就會(huì)促使復(fù)習(xí)沒(méi)有效率。建議大家在開(kāi)始一個(gè)學(xué)科的復(fù)習(xí)之前,先靜下心來(lái)認(rèn)真想一想接下來(lái)需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認(rèn)真去做,同時(shí)需要很高的注意力,只有這樣才會(huì)有很好的效果。

(3)在第一輪復(fù)習(xí)階段,學(xué)習(xí)的重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習(xí)上來(lái)。

因此,建議廣大同學(xué)在一輪復(fù)習(xí)的時(shí)候千萬(wàn)不要急于求成,一定要靜下心來(lái),認(rèn)真的揣摩每個(gè)知識(shí)點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復(fù)習(xí)才能顯出成效。

二、注重教材、注重基礎(chǔ),忌盲目做題

要把書(shū)本中的常規(guī)題型做好,所謂做好就是要用最少的時(shí)間把題目做對(duì)。部分同學(xué)在第一輪復(fù)習(xí)時(shí)對(duì)基礎(chǔ)題不予以足夠的重視,認(rèn)為題目看上去會(huì)做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯(cuò)的地方錯(cuò)了”,最終把原因簡(jiǎn)單的歸結(jié)為粗心,從而忽視了對(duì)基本概念的掌握,對(duì)基本結(jié)論和公式的記憶及基本計(jì)算的訓(xùn)練和常規(guī)方法的積累,造成了實(shí)際成績(jī)與心理感覺(jué)的偏差。

可見(jiàn),數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識(shí)點(diǎn)的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對(duì)稱性等性質(zhì),學(xué)會(huì)利用圖像即數(shù)形結(jié)合。

三、抓薄弱環(huán)節(jié),做好復(fù)習(xí)的針對(duì)性,忌無(wú)計(jì)劃

每個(gè)同學(xué)在數(shù)學(xué)學(xué)習(xí)上遇到的問(wèn)題有共同點(diǎn),更有不同點(diǎn)。在復(fù)習(xí)課上,老師只能針對(duì)性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問(wèn)題則需要通過(guò)自己的思考,與同學(xué)們的討論,并向老師提問(wèn)來(lái)解決問(wèn)題,我們提倡同學(xué)多問(wèn)老師,要敢于問(wèn)。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問(wèn)題沒(méi)有解決,要明確只有把漏洞一一補(bǔ)上才能提高。復(fù)習(xí)的過(guò)程,實(shí)質(zhì)就是解決問(wèn)題的過(guò)程,問(wèn)題解決了,復(fù)習(xí)的效果就實(shí)現(xiàn)了。同時(shí),也請(qǐng)同學(xué)們注意:在你問(wèn)問(wèn)題之前先經(jīng)過(guò)自己思考,不要把不經(jīng)過(guò)思考的問(wèn)題就直接去問(wèn),因?yàn)檫@并不能起到更大作用。

高三的復(fù)習(xí)一定是有計(jì)劃、有目標(biāo)的,所以千萬(wàn)不要盲目做題。第一輪復(fù)習(xí)非常具有針對(duì)性,對(duì)于所有知識(shí)點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡(jiǎn)單做題是達(dá)不到一輪復(fù)習(xí)應(yīng)該具有的效果。而且盲目做題沒(méi)有針對(duì)性,更不會(huì)有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對(duì)知識(shí)點(diǎn)運(yùn)用方法的總結(jié)。

四、在平時(shí)做題中要養(yǎng)成良好的解題習(xí)慣,忌不思

1.樹(shù)立信心,養(yǎng)成良好的運(yùn)算習(xí)慣。

部分同學(xué)平時(shí)學(xué)習(xí)過(guò)程中自信心不足,做作業(yè)時(shí)免不了互相對(duì)答案,也不認(rèn)真找出錯(cuò)誤原因并加以改正?!皶?huì)而不對(duì)”是高三數(shù)學(xué)學(xué)習(xí)的大忌,常見(jiàn)的有審題失誤、計(jì)算錯(cuò)誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無(wú)窮??山Y(jié)合平時(shí)解題中存在的具體問(wèn)題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識(shí)方面的缺陷,再有針對(duì)性加以解決。必要時(shí)作些記錄,也就是錯(cuò)題本,每位同學(xué)必備的,以便以后查詢。

2.做好解題后的開(kāi)拓引申,培養(yǎng)一題多解和舉一反三的能力。

解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對(duì)解題方法的開(kāi)拓引申,即一道數(shù)學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。

考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對(duì)題目做開(kāi)拓引申,引申出新題和新解法,有利于培養(yǎng)同學(xué)們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力:

(1)把題目條件開(kāi)拓引申。

①把特殊條件一般化;②把一般條件特殊化;③把特殊條件和一般條件交替變化。

(2)把題目結(jié)論開(kāi)拓引申。

(3)把題型開(kāi)拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。

3.提高解題速度,掌握解題技巧。

提高解題速度的主要因素有二:一是解題方法的巧妙與簡(jiǎn)捷;二是對(duì)常規(guī)解法的掌握是否達(dá)到高度的熟練程度。

五、學(xué)會(huì)總結(jié)、歸納,訓(xùn)練到位,忌題量不足

我在暑期上課的時(shí)候發(fā)現(xiàn),很多同學(xué)都是一看到題目就開(kāi)始做題,這也是一輪復(fù)習(xí)應(yīng)該避免的地方。做題如果不注重思路的分析,知識(shí)點(diǎn)的運(yùn)用,效果可想而知。因此建議同學(xué)們?cè)谧鲱}前要把老師上課時(shí)復(fù)習(xí)的知識(shí)再回顧一下,梳理知識(shí)體系,回顧各個(gè)知識(shí)點(diǎn),對(duì)所學(xué)的知識(shí)結(jié)構(gòu)要有一個(gè)完整清楚的認(rèn)識(shí),認(rèn)真分析題目考查的知識(shí),思想,以及方法,還要學(xué)會(huì)總結(jié)歸納不留下任何知識(shí)的盲點(diǎn),在一輪復(fù)習(xí)中要注意對(duì)各個(gè)知識(shí)點(diǎn)的細(xì)化。這個(gè)過(guò)程不需要很長(zhǎng)的時(shí)間,而且到了后續(xù)階段會(huì)越來(lái)越熟練。因此,養(yǎng)成良好的做題習(xí)慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。

實(shí)踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習(xí)下不僅可以更扎實(shí)的掌握知識(shí)點(diǎn),還可以更深入的了解知識(shí)點(diǎn),避免出現(xiàn)“會(huì)而不對(duì)、對(duì)而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分?jǐn)?shù)的一個(gè)直接反映,尤其是數(shù)學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認(rèn)真細(xì)致的推敲才會(huì)有較大的提升。有句話說(shuō)的好,“量變導(dǎo)致質(zhì)變”,因此,同學(xué)們?cè)诿空聫?fù)習(xí)的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對(duì)這一章知識(shí)點(diǎn)的熟練運(yùn)用。

第3篇

關(guān)鍵詞:高中數(shù)學(xué) 總結(jié) 策略

一、做一個(gè)錯(cuò)題本

我給同學(xué)們一個(gè)公式:少錯(cuò)=多對(duì)。如果做錯(cuò)了題目,不管發(fā)現(xiàn)什么錯(cuò)誤,不管是多么簡(jiǎn)單的錯(cuò)誤,都收錄進(jìn)來(lái);我相信,一旦你真的做起來(lái),你就會(huì)吃驚地發(fā)現(xiàn),你的錯(cuò)誤并不是更正一次就可以改掉的,相反,有很多錯(cuò)誤都是第二次、第三次犯了,甚至更多次!看著自己的錯(cuò)體集,哎呀,太觸目驚心了。這真是一個(gè)自我反省的好地方,更是一個(gè)提高成績(jī)的好方法。復(fù)習(xí)越往后,在知識(shí)上取得突破的可能性就越小,而能糾正自己的錯(cuò)誤,實(shí)在是一個(gè)不小的增長(zhǎng)空間。如果你還沒(méi)有這個(gè)習(xí)慣,那么,就去準(zhǔn)備一個(gè)吧,收集自己的錯(cuò)誤,分門(mén)別類,然后沒(méi)事的時(shí)候就翻一翻,看一看,自警一番,肯定會(huì)有很大的收獲。

二、準(zhǔn)備一本合適的參考書(shū)

不要迷信參考書(shū),參考書(shū)不要很多,有一本主要的就足夠了。我發(fā)現(xiàn)了一個(gè)很奇怪的現(xiàn)象,現(xiàn)在市場(chǎng)上很多參考書(shū)賣(mài)得很好,都掛著某某名校名師的牌子,鼓吹的有多么多么好,結(jié)果,不少同學(xué)在眼花繚亂中拿了一本又一本。其實(shí),我們?cè)趯W(xué)習(xí)、復(fù)習(xí)中時(shí)間很有限,可供自己支配的時(shí)間更有限,在這些有限的時(shí)間,朝三暮四,一會(huì)兒看這一本參考書(shū),一會(huì)兒看那一本參考書(shū),還不如不看。把課本的知識(shí)結(jié)構(gòu)、知識(shí)要點(diǎn)爛熟于心,能夠在很少的時(shí)間里把一科知識(shí)全部回顧一遍。能做到這點(diǎn),要比看一些參考書(shū)要重要得多??傊痪湓?,抓住最根本、最主要的,不要盲目地看參考書(shū),特別是不要看很多參考書(shū)。

三、正確對(duì)待遇到的疑難問(wèn)題

首先是要盡可能地通過(guò)自己的努力去解決,如果不能解決,也要弄明白自己不會(huì)的原因是什么,問(wèn)題出在哪里。我經(jīng)常說(shuō)的一句話是:決不奢望不遇到難題,但是,也決不允許自己不明白難題難在哪里。

自己不能解決的時(shí)候,可以采取討論以及向老師請(qǐng)教等方式,最終解決那些難題;解決絕不是你原來(lái)不會(huì)做的通過(guò)別人的幫助會(huì)作了,而是,在會(huì)作之后,回過(guò)頭來(lái)比較一下原來(lái)不會(huì)的原因是什么,一定要把這個(gè)原因找出來(lái),否則,就失去了一次提高的機(jī)會(huì),做題也失去了意義。

四、力爭(zhēng)做到“跳出題海”

大家一定非常關(guān)心這個(gè)題目,因?yàn)槲锢黼y懂,化學(xué)難記,數(shù)學(xué)有做不完的題。但題目是數(shù)學(xué)的心臟,不做題是萬(wàn)萬(wàn)不行的。而擺在我們面前的題目太多了,好像永遠(yuǎn)也做不完。試試下面的方法,第一,在完成作業(yè)的基礎(chǔ)上分析一下每道題目都是怎么考查的,考查了什么知識(shí)點(diǎn),對(duì)于這個(gè)知識(shí)點(diǎn)的考查還有沒(méi)有其他的方式;第二,繼續(xù)做題時(shí),完全不必要每道題目都詳細(xì)地解出來(lái)了,只要看過(guò)之后,可以歸入我們上面分析過(guò)的題型,知道解題思路就可以跳過(guò)去了!這樣,對(duì)每個(gè)知識(shí)點(diǎn),都能把握其考試方式,這才是真正的提高。

五、學(xué)習(xí)考場(chǎng)制勝的法寶

首先是要擺脫心理上的恐懼,可以這樣提醒自己,“害怕什么呢,不管有多難,大家都和我一樣?!边@樣自我心理暗示一段時(shí)間之后,心里就坦然平靜多了。其實(shí)學(xué)習(xí)和考試中最重要的不是要學(xué)或考得怎么怎么樣,而是能把自己的水平發(fā)揮出來(lái),這也是超水平發(fā)揮的前提。其次,就是要有正確的學(xué)習(xí)和考試策略,做到“寵辱不驚”,特別是遇到難題的時(shí)候,不要緊張??荚囍杏羞@樣一種現(xiàn)象,一旦遇到一個(gè)題目,做了好長(zhǎng)時(shí)間還無(wú)法解決,就焦躁不安,嚴(yán)重影響后面的做題,進(jìn)而也影響考試的成績(jī)。

六、調(diào)整心態(tài),正確對(duì)待考試。

首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。

在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。

七、課內(nèi)重視聽(tīng)講,課后及時(shí)復(fù)習(xí)。

第4篇

(一)導(dǎo)數(shù)第一定義

設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有增量 x ( x0 + x 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)取得增量 y = f(x0 + x) - f(x0) ;如果 y 與 x 之比當(dāng) x0 時(shí)極限存在,則稱函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f'(x0) ,即導(dǎo)數(shù)第一定義

(二)導(dǎo)數(shù)第二定義

設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有變化 x ( x - x0 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)變化 y = f(x) - f(x0) ;如果 y 與 x 之比當(dāng) x0 時(shí)極限存在,則稱函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f'(x0) ,即 導(dǎo)數(shù)第二定義

(三)導(dǎo)函數(shù)與導(dǎo)數(shù)

如果函數(shù) y = f(x) 在開(kāi)區(qū)間 I 內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導(dǎo)。這時(shí)函數(shù) y = f(x) 對(duì)于區(qū)間 I 內(nèi)的每一個(gè)確定的 x 值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來(lái)函數(shù) y = f(x) 的導(dǎo)函數(shù),記作 y', f'(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱導(dǎo)數(shù)。

(四)單調(diào)性及其應(yīng)用

1.利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟

(1)求f(x)

(2)確定f(x)在(a,b)內(nèi)符號(hào) (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

2.用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟

(1)求f(x)

第5篇

高中數(shù)學(xué)集合知識(shí)總結(jié)如下:

一、集合間的關(guān)系

1.子集:如果集合A中所有元素都是集合B中的元素,則稱集合A為集合B的子集。

2.真子集:如果集合AB,但存在元素a∈B,且a不屬于A,則稱集合A是集合B的真子集。

3.集合相等:集合A與集合B中元素相同那么就說(shuō)集合A與集合B相等。

子集:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,我們就說(shuō)集合A包含于集合B,或集合B包含集合A,記作:AB(或BA),讀作“A包含于B”(或“B包含A”),這時(shí)我們說(shuō)集合是集合的子集,更多集合關(guān)系的知識(shí)點(diǎn)見(jiàn)集合間的基本關(guān)系

二、集合的運(yùn)算

1.并集

并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}

2.交集

交集: 以屬于A且屬于B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}

3.補(bǔ)集

三、高中數(shù)學(xué)集合知識(shí)歸納:

1.集合的有關(guān)概念。

1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素

注意:①集合與集合的元素是兩個(gè)不同的概念,教科書(shū)中是通過(guò)描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。

②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無(wú)序性({a,b}與{b,a}表示同一個(gè)集合)。

③集合具有兩方面的意義,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必須符號(hào)條件

2)集合的表示方法:常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無(wú)限集,空集。

4)常用數(shù)集:N,Z,Q,R,N*

2.子集、交集、并集、補(bǔ)集、空集、全集等概念。

1)子集:若對(duì)x∈A都有x∈B,則A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)并集:A∪B={x| x∈A或x∈B}

5)補(bǔ)集:CUA={x| x A但x∈U}

注意:①? A,若A≠?,則? A ;

②若 , ,則 ;

③若 且 ,則A=B(等集)

3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語(yǔ)和符號(hào),特別要注意以下的符號(hào):(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。

4.有關(guān)子集的幾個(gè)等價(jià)關(guān)系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

5.交、并集運(yùn)算的性質(zhì)

①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

6.有限子集的個(gè)數(shù):設(shè)集合A的元素個(gè)數(shù)是n,則A有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。

四、數(shù)學(xué)集合例題講解:

【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關(guān)系

A) M=N P B) M N=P C) M N P D) N P M

分析一:從判斷元素的共性與區(qū)別入手。

解答一:對(duì)于集合M:{x|x= ,m∈Z};對(duì)于集合N:{x|x= ,n∈Z}

對(duì)于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以M N=P,故選B。

分析二:簡(jiǎn)單列舉集合中的元素。

解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時(shí)不要急于判斷三個(gè)集合間的關(guān)系,應(yīng)分析各集合中不同的元素。

= ∈N, ∈N,M N,又 = M,M N,

= P,N P 又 ∈N,P N,故P=N,所以選B。

點(diǎn)評(píng):由于思路二只是停留在最初的歸納假設(shè),沒(méi)有從理論上解決問(wèn)題,因此提倡思路一,但思路二易人手。

變式:設(shè)集合 , ,則( B )

A.M=N B.M N C.N M D.

解:

當(dāng) 時(shí),2k+1是奇數(shù),k+2是整數(shù),選B

【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個(gè)數(shù)為

A)1 B)2 C)3 D)4

分析:確定集合A*B子集的個(gè)數(shù),首先要確定元素的個(gè)數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個(gè)來(lái)求解。

解答:A*B={x|x∈A且x B}, A*B={1,7},有兩個(gè)元素,故A*B的子集共有22個(gè)。選D。

變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個(gè)數(shù)為

A)5個(gè) B)6個(gè) C)7個(gè) D)8個(gè)

變式2:已知{a,b} A {a,b,c,d,e},求集合A.

解:由已知,集合中必須含有元素a,b.

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

評(píng)析 本題集合A的個(gè)數(shù)實(shí)為集合{c,d,e}的真子集的個(gè)數(shù),所以共有 個(gè) .

【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實(shí)數(shù)p,q,r的值。

解答:A∩B={1} 1∈B 12?4×1+r=0,r=3.

B={x|x2?4x+r=0}={1,3}, A∪B={?2,1,3},?2 B, ?2∈A

A∩B={1} 1∈A 方程x2+px+q=0的兩根為-2和1,

變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實(shí)數(shù)b,c,m的值.

解:A∩B={2} 1∈B 22+m?2+6=0,m=-5

B={x|x2-5x+6=0}={2,3} A∪B=B

又 A∩B={2} A={2} b=-(2+2)=4,c=2×2=4

b=-4,c=4,m=-5

【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1

分析:先化簡(jiǎn)集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。

解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。

綜合以上各式有B={x|-1≤x≤5}

變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

點(diǎn)評(píng):在解有關(guān)不等式解集一類集合問(wèn)題,應(yīng)注意用數(shù)形結(jié)合的方法,作出數(shù)軸來(lái)解之。

變式2:設(shè)M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。

解答:M={-1,3} , M∩N=N, N M

①當(dāng) 時(shí),ax-1=0無(wú)解,a=0 ②

綜①②得:所求集合為{-1,0, }

【例5】已知集合 ,函數(shù)y=log2(ax2-2x+2)的定義域?yàn)镼,若P∩Q≠Φ,求實(shí)數(shù)a的取值范圍。

分析:先將原問(wèn)題轉(zhuǎn)化為不等式ax2-2x+2>0在 有解,再利用參數(shù)分離求解。

解答:(1)若 , 在 內(nèi)有有解

令 當(dāng) 時(shí),

所以a>-4,所以a的取值范圍是

變式:若關(guān)于x的方程 有實(shí)根,求實(shí)數(shù)a的取值范圍。

第6篇

關(guān)鍵詞:高中數(shù)學(xué);教學(xué);經(jīng)驗(yàn);反思

中圖分類號(hào):G632 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1002-7661(2012)23-054-01

反思可以讓人不斷進(jìn)步,而教學(xué)者在教學(xué)中的反思可以改正教學(xué)中存在的眾多問(wèn)題,并且可以發(fā)現(xiàn)新的問(wèn)題并做到及時(shí)地探索。另外通過(guò)反思,教學(xué)者們所積累的經(jīng)驗(yàn)可以升華成為理論,所以反思對(duì)于教學(xué)工作者的工作十分關(guān)鍵。

作為一名任課教師,我的主要任務(wù)就是將自己的知識(shí)傳授給學(xué)生,讓學(xué)生能在知識(shí)的海洋中徜徉。而在當(dāng)班主任期間,我不僅要關(guān)心學(xué)生的學(xué)習(xí),還要關(guān)心學(xué)生們?nèi)粘I钪械狞c(diǎn)點(diǎn)滴滴,這一年以來(lái)的確非常辛苦,但是我也收獲了很多。因此,我總結(jié)出以下的經(jīng)驗(yàn),希望對(duì)于剛剛步入教師行列還沒(méi)有經(jīng)驗(yàn)的高中數(shù)學(xué)教師有所幫助。

一、加強(qiáng)理論學(xué)習(xí),積極探索學(xué)習(xí)新課程

自古以來(lái)就流傳一句話,實(shí)踐出真知。很多真理都是靠實(shí)踐總結(jié)出來(lái)的。但是理論向?qū)б脖夭豢缮?。兩年以前,我?guó)的教育開(kāi)始實(shí)施新課程標(biāo)準(zhǔn),我對(duì)于新課程標(biāo)準(zhǔn)缺少認(rèn)知和了解。因此沒(méi)能完全按照新課程標(biāo)準(zhǔn)的方式授課,沒(méi)有達(dá)到新課標(biāo)的目的。但是在開(kāi)會(huì)和聽(tīng)其他優(yōu)秀老師的課程之后,我開(kāi)始了積極探索的過(guò)程。

在學(xué)習(xí)新課程標(biāo)準(zhǔn)和要求之后,我還結(jié)合了高考考試說(shuō)明,及時(shí)更新我大腦中的知識(shí),迅速掌握最新的資訊,以便傳授給學(xué)生。另外為了能夠更好的和一線優(yōu)秀的教師進(jìn)行溝通,我開(kāi)通了自己的微博,注重網(wǎng)絡(luò)信息的運(yùn)用,經(jīng)常去看精品課程,在觀看課程的過(guò)程中也不斷地思考,思考著課程中的某些內(nèi)容是否可以運(yùn)用到自己的課堂上面,是否可以用來(lái)調(diào)動(dòng)同學(xué)們的積極性,是否對(duì)于我的授課有用,另外我在開(kāi)通的教育教學(xué)博客上會(huì)經(jīng)常記錄自己的教學(xué)經(jīng)驗(yàn)以便和其他優(yōu)秀的教師們探討溝通。而當(dāng)我在教學(xué)上面有問(wèn)題的時(shí)候,我也會(huì)通過(guò)微博與其他教師進(jìn)行聯(lián)系,共同的探討。

作為一名年輕的教師,我發(fā)現(xiàn)在教學(xué)前后進(jìn)行教學(xué)反思十分重要。在課堂之中,學(xué)生是主體,一定要注重學(xué)生對(duì)傳授內(nèi)容的反應(yīng)情況,讓學(xué)生能夠?qū)W會(huì)思考,這才是教學(xué)的主要目的。

二、真心關(guān)愛(ài)學(xué)生,注重學(xué)生的變化

“親其師,信其道?!睂W(xué)生如果能夠和老師有一個(gè)很好的關(guān)系的話,在這個(gè)老師的這個(gè)科目上自然也會(huì)下足功夫,做很大的努力。而教師不僅是肩負(fù)著傳授知識(shí)的作用,還要能夠?yàn)閷W(xué)生樹(shù)立正確的人生觀,價(jià)值觀,指引學(xué)生在人生的道路上正確的前進(jìn)。所謂“經(jīng)師易得,人師難求。”真正優(yōu)秀的教師是能夠正確的為學(xué)生指引人生方向的教師。而想要做一名優(yōu)秀的教師,首先要做到的就是關(guān)愛(ài)學(xué)生。所謂關(guān)愛(ài)學(xué)生,就是關(guān)心學(xué)生的生活,學(xué)習(xí)等多個(gè)方面,能夠做到人人平等,不拿老師的架子壓學(xué)生。尊重學(xué)生的個(gè)人愛(ài)好,興趣,習(xí)慣等等,不強(qiáng)迫學(xué)生去改變興趣和習(xí)慣等。

關(guān)愛(ài)學(xué)生體現(xiàn)在多個(gè)方面,學(xué)生對(duì)于老師是崇拜和尊敬的心理。而老師們千萬(wàn)不能夠居高臨下地對(duì)待學(xué)生,一定要能夠做到平等待人,尊重學(xué)生,關(guān)愛(ài)學(xué)生,和學(xué)生能夠相處融洽。而關(guān)心學(xué)生首先要對(duì)學(xué)生有足夠的了解,在了解學(xué)生之后就能夠明白學(xué)生的需求,對(duì)癥下藥,幫助學(xué)生樹(shù)立健全的人格,正確的人生觀、價(jià)值觀。和學(xué)生擁有良好的關(guān)系,在課堂中,學(xué)生也會(huì)認(rèn)真聽(tīng)講,積極配合老師,努力的學(xué)習(xí)這個(gè)科目。所以關(guān)愛(ài)學(xué)生可以增強(qiáng)教學(xué)的針對(duì)性和有效性。教師平常要多和學(xué)生溝通,做學(xué)生的良師益友。而且經(jīng)常和學(xué)生溝通還可以發(fā)現(xiàn)學(xué)生在日常生活中存在的問(wèn)題,在備課之中就可以結(jié)合班級(jí)的情況,適當(dāng)?shù)男薷膬?nèi)容,提高課堂的效率。

三、充分備課,做好教師的本職

課堂的好壞,不僅決定于老師的表達(dá)能力,還決定在老師的備課準(zhǔn)備。備課是教師教學(xué)之中非常重要的一個(gè)環(huán)節(jié),備課的質(zhì)量直接會(huì)影響到學(xué)生學(xué)習(xí)的效果。如果一個(gè)老師的備課準(zhǔn)備都不充分,在講課之中錯(cuò)誤百出,或是干脆講不下去了,這樣學(xué)生在聽(tīng)講的時(shí)候也不會(huì)認(rèn)真,對(duì)這個(gè)老師也不會(huì)產(chǎn)生好的印象,在以后的學(xué)習(xí)之中也不會(huì)認(rèn)真努力。所以老師的備課對(duì)同學(xué)們的影響極大。優(yōu)秀的教師都能夠合理安排課堂上的時(shí)間,規(guī)劃好課堂之中所要傳授的內(nèi)容。

而我在備課之中十分關(guān)心以下幾點(diǎn)。

1、新課程改革之后,新課程和老課程的主要區(qū)別。

2、本節(jié)課程之中所要講授的內(nèi)容在高中數(shù)學(xué)中所占有的地位及重要性。

3、近幾年來(lái)關(guān)于本節(jié)所要講授的內(nèi)容的高考之中出現(xiàn)的題型。

4、新課程標(biāo)準(zhǔn)之中與考試說(shuō)明之中對(duì)于本章節(jié)的要求。

5、本節(jié)內(nèi)容需要哪些經(jīng)典例題或是習(xí)題。

6、節(jié)內(nèi)容之中的重點(diǎn)和難點(diǎn)。

第7篇

面對(duì)眾多初中學(xué)習(xí)的成功者淪為高中學(xué)習(xí)的失敗者,筆者對(duì)他們的學(xué)習(xí)狀態(tài)進(jìn)行了研究、調(diào)查表明,造成成績(jī)滑坡的主要原因有以下幾個(gè)方面。

1.被動(dòng)學(xué)習(xí)。許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒(méi)有掌握學(xué)習(xí)主動(dòng)權(quán)。表現(xiàn)在不定計(jì)劃,坐等上課,課前沒(méi)有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒(méi)聽(tīng)到“門(mén)道”。沒(méi)有真正理解所學(xué)內(nèi)容。

2.學(xué)不得法。老師上課一般都要講清知識(shí)的來(lái)龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒(méi)能專心聽(tīng)課,對(duì)要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結(jié)果是事倍功半,收效甚微。

3.不重視基礎(chǔ)。一些“自我感覺(jué)良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書(shū)寫(xiě),但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。

4.進(jìn)一步學(xué)習(xí)條件不具備。高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。如二次函數(shù)在閉區(qū)間上的最值問(wèn)題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問(wèn)題等。客觀上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。

高中學(xué)生僅僅想學(xué)是不夠的,還必須“會(huì)學(xué)”,要講究科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,才能變被動(dòng)為主動(dòng)。針對(duì)學(xué)生學(xué)習(xí)中出現(xiàn)的上述情況,教師應(yīng)當(dāng)采取以加強(qiáng)學(xué)法指導(dǎo)為主,化解分化點(diǎn)為輔的對(duì)策:

1.加強(qiáng)學(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣。良好的學(xué)習(xí)習(xí)慣包括制定計(jì)劃、課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。

制定計(jì)劃使學(xué)習(xí)目的明確,時(shí)間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動(dòng)學(xué)生主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力。但計(jì)劃一定要切實(shí)可行,既有長(zhǎng)遠(yuǎn)打算,又有短期安排,執(zhí)行過(guò)程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。

課前自學(xué)是學(xué)生上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ)。課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動(dòng)權(quán)。自學(xué)不能搞走過(guò)場(chǎng),要講究質(zhì)量,力爭(zhēng)在課前把教材弄懂,上課著重聽(tīng)老師講課的思路,把握重點(diǎn),突破難點(diǎn),盡可能把問(wèn)題解決在課堂上。

上課是理解和掌握基本知識(shí)、基本技能和基本方法的關(guān)鍵環(huán)節(jié)?!皩W(xué)然后知不足”,課前自學(xué)過(guò)的同學(xué)上課更能專心聽(tīng)課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細(xì)刻,什么地方可以一帶而過(guò),該記的地方才記下來(lái),而不是全抄全錄,顧此失彼。

及時(shí)復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán),通過(guò)反復(fù)閱讀教材,多方查閱有關(guān)資料,強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,將所學(xué)的新知識(shí)與有關(guān)舊知識(shí)聯(lián)系起來(lái),進(jìn)行分析比較,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記上,使對(duì)所學(xué)的新知識(shí)由“懂”到“會(huì)”。

獨(dú)立作業(yè)是學(xué)生通過(guò)自己的獨(dú)立思考,靈活地分析問(wèn)題、解決問(wèn)題,進(jìn)一步加深對(duì)所學(xué)新知識(shí)的理解和對(duì)新技能的掌握過(guò)程。這一過(guò)程是對(duì)學(xué)生意志毅力的考驗(yàn),通過(guò)運(yùn)用使學(xué)生對(duì)所學(xué)知識(shí)由“會(huì)”到“熟”。