時(shí)間:2023-09-24 15:13:24
序論:在您撰寫化學(xué)氣相沉積的概念時(shí),參考他人的優(yōu)秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發(fā)您的創(chuàng)作熱情,引導(dǎo)您走向新的創(chuàng)作高度。
關(guān)鍵詞:納米催化劑 廢氣處理 制備方法
當(dāng)前,隨著納米納米材料的研究和突破,依據(jù)納米材料制備的納米催化劑正在成為煉油廢氣處理中的關(guān)鍵點(diǎn)。納米材料通過(guò)體積效應(yīng)、表面效應(yīng)、以及宏觀的量子隧道效應(yīng)等能夠產(chǎn)生極大的化學(xué)活性,顯著地提高了催化效益。目前,國(guó)際上許多國(guó)家已經(jīng)將納米催化劑的研發(fā)定義為新世紀(jì)的重大發(fā)現(xiàn)。目前,納米催化劑在各個(gè)領(lǐng)域得到廣泛應(yīng)用,尤其是在煉油的廢氣處理方面。
一、納米催化劑的相關(guān)概念
納米催化劑是以粒子小于0.3微米的鈉和銅鋅合金的極細(xì)微粒為主要成分研制而成的一種催化劑。納米催化劑實(shí)現(xiàn)了催化效率較傳統(tǒng)鎳催化劑的效率,提升了將近10倍。納米催化劑的粒子的表面積很大,與同質(zhì)量的金屬相比,普通金屬的表面積是納米金屬的千分之一。由于,納米金屬的表面積很大,因此,其吸附能力也相當(dāng)?shù)膹?qiáng)大,于是具備了極大的催化作用。
納米催化劑是基于納米材料的基礎(chǔ)上配制而成的,因此,納米催化劑具備特殊的納米結(jié)構(gòu),同時(shí)也具備了普通催化劑沒(méi)有的特性。正是因?yàn)榧{米催化劑的這一獨(dú)特性,決定著納米催化劑在催化效果上的選擇性和高催化性。目前,納米催化劑正廣泛的應(yīng)用于工業(yè)生產(chǎn)與環(huán)境的保護(hù)中。
二、納米催化劑的制備方法
目前,關(guān)于納米催化劑的制備方法國(guó)際上主要有氣相法、液相化學(xué)的合成法以及固相法三大類。這三類制備方法都有其獨(dú)特的特點(diǎn)和應(yīng)用領(lǐng)域,下面就讓筆者進(jìn)行詳細(xì)的分析。
首先,氣相法。目前,工業(yè)主要選用的氣相法有: 化學(xué)氣相沉積法、氣體冷凝法、濺射法、活性氫和熔融金屬的反應(yīng)法等。此氣相法中,尤以化學(xué)氣相沉積法,簡(jiǎn)稱CVD,是一種廣泛應(yīng)用的化學(xué)方法?;瘜W(xué)氣相沉積法是以氣體作為原料,通過(guò)化學(xué)反應(yīng),在氣相里形成了物質(zhì)的基本離子,這些離子經(jīng)過(guò)成核與生長(zhǎng),最終形成了納米催化劑。通過(guò)化學(xué)氣相沉積法制備而成的納米催化劑不但粒子的純度非常高,而且粒度的分布也非常的均勻。目前,化學(xué)氣相沉積法在納米催化劑的制備中得到了廣泛應(yīng)用。
其次,液相的化學(xué)合成法。目前,在納米催化劑的制備業(yè)中經(jīng)常使用的液相的化學(xué)合成法主要有: 沉淀法、水熱法、噴霧法、離子的交換過(guò)程以及溶劑的揮發(fā)分解法等。這些化學(xué)合成法能夠與一種或者多種的可溶性的金屬類按量進(jìn)行制備溶合,讓金屬中包含的元素在溶液里均勻的分散成分子或離子的形式,利用沉淀劑或者水解、蒸發(fā)、升華等作用,均勻的將金屬離子結(jié)晶或沉淀出來(lái),最后通過(guò)對(duì)結(jié)晶體或沉淀物進(jìn)行加熱分解或脫水,從而獲得納米催化劑。納米催化劑的此種制備方法具有操作簡(jiǎn)易,方法簡(jiǎn)單,條件溫和,產(chǎn)出率高等特點(diǎn)。而且,此方法不但能夠制備一種成分的納米催化劑,而且還能夠合成復(fù)合型的納米催化劑。但是,此類方法制成的納米催化劑的純度不是很高,含有雜質(zhì),而且粒度不夠均勻。
再次,固相法。目前,經(jīng)常使用的固相法主要有:物理粉碎法、固相反應(yīng)法和機(jī)械球磨法等。機(jī)械球磨法和物理粉碎法的優(yōu)勢(shì)在于操作上非常的簡(jiǎn)單,而且方法易學(xué),其缺點(diǎn)在于制備的催化劑的純度不高,粒度的分布也不是很均勻。目前,較傳統(tǒng)的固相法,人們研制出了室溫的固相反應(yīng)的合成法,此方法的制備方法簡(jiǎn)單,而且產(chǎn)率非常高。
三、納米催化劑在煉油廢氣處理中的運(yùn)用
煉油的過(guò)程會(huì)產(chǎn)生大量的有毒、有害氣體,對(duì)人們的身體和環(huán)境造成了很大的威脅。隨著人們對(duì)環(huán)境的關(guān)注以及對(duì)生活質(zhì)量的認(rèn)識(shí)的提高。煉油廢氣的處理成為人們關(guān)注的焦點(diǎn)。納米催化劑憑借其巨大的催化作用,在廢氣處理中發(fā)揮了很大的作用。
首先,對(duì)于煉油過(guò)程中產(chǎn)生的廢氣進(jìn)行溶劑的吸收,經(jīng)過(guò)預(yù)處理后,氣體經(jīng)過(guò)氣體分配器均勻的分布到催化劑容器里,此環(huán)節(jié)要確保進(jìn)入催化劑容器中的氣體量是基本相等的,同時(shí)也讓不同的廢氣進(jìn)行填充混合,經(jīng)過(guò)納米催化劑的高效催化作用,以及氣體間的化學(xué)反應(yīng),將廢氣轉(zhuǎn)化為氮?dú)獾葘?duì)人體和環(huán)境沒(méi)有威脅的氣體。
四、結(jié)語(yǔ)
隨著人們對(duì)納米材料研究的深入,納米催化劑在各個(gè)領(lǐng)域得到廣泛應(yīng)用,尤其是在煉油廢氣處理方面。通過(guò)本文對(duì)納米催化劑的相關(guān)概念、制備方法以及在煉油廢氣中應(yīng)用的分析,顯示了納米催化劑作為新興催化劑對(duì)于廢氣處理中的顯著功效。隨著人們對(duì)納米催化劑的深入研究,納米催化劑一定能夠取代傳統(tǒng)催化劑,在催化領(lǐng)域發(fā)揮更加重要的作用。
參考文獻(xiàn)
[1]郝古明,賀克斌,傅誑新,等.城市機(jī)動(dòng)車排放污染控制[M].北京:中陶環(huán)境科學(xué)出版社,2011(10).
[2]李俊華,郝吉明,傅立新.機(jī)動(dòng)車尾氣催化凈化技術(shù)[J].工業(yè)催化,2012(12).
【關(guān)鍵詞】DLC RF--PECVD 等離子體 邊界擾動(dòng)
1 引言
隨著軍事技術(shù)及航空航天技術(shù)的發(fā)展,紅外技術(shù)越來(lái)越受到人們的重視,在軍事航天領(lǐng)域有著舉足輕重的作用。但紅外元件的工作環(huán)境往往非常惡劣,而用作紅外的窗口材料如Ge,ZnS,ZnSe,GaAs,氟化鎂(MgF2),藍(lán)寶石,尖晶石等在應(yīng)用中都存在一些問(wèn)題,比如Ge在高溫時(shí)透過(guò)率下降,ZnS耐濕性差,ZnSe雖然紅外透過(guò)率高,但機(jī)械強(qiáng)度和耐腐蝕性差等等,當(dāng)在這些材料表面鍍上DLC保護(hù)膜后,這樣的紅外窗口既有較高的紅外透過(guò)率,又有很好的綜合性能抵抗惡劣的環(huán)境且制備成本低,因此是目前普遍采用的方法。
DLC膜的制備方式有很多種,主要分為物理氣相沉積和化學(xué)氣相沉積。目前在光學(xué)級(jí)DLC應(yīng)用方面廣泛采用的沉積方式是等離子體增強(qiáng)化學(xué)氣相沉積,常用的等離子體增強(qiáng)化學(xué)氣相沉積法有兩種:直流(DC--PECVD)法和射頻(RF--PECVD)法。DC--PECVD法沉積薄膜的優(yōu)點(diǎn)易于控制極板負(fù)偏壓,可以對(duì)極板負(fù)偏壓進(jìn)行大幅度調(diào)節(jié),缺點(diǎn)是沉積絕緣薄膜時(shí),薄膜表面積累大量電荷,這些電荷會(huì)阻礙薄膜生長(zhǎng),使薄膜的沉積速率降低,薄膜厚度減少。采用射頻等離子體增強(qiáng)化學(xué)氣相沉積(RF--PECVD)法,有效的解決了表面電荷積累問(wèn)題,從而提高了沉積速度。
RF--PECVD分為感應(yīng)圈式和平行板電容耦合式兩種,感應(yīng)圈式存在沉積速率低且膜層質(zhì)量較差等問(wèn)題,因此實(shí)際中多采用平行板電容耦合式。用這種方法制備薄膜,沉積速率高,膜層致密均勻,穩(wěn)定性好,本文涉及的實(shí)驗(yàn)設(shè)備就屬于這種類型。
用射頻等離子體增強(qiáng)化學(xué)氣相沉積(RF--PECVD)法沉積DLC膜時(shí),會(huì)出現(xiàn)邊緣和中部的膜厚差異,特別是波長(zhǎng)在5微米以下時(shí),僅憑肉眼就可以看到色環(huán)。色環(huán)的出現(xiàn)是由于膜層的物理厚度不同造成的,邊緣的厚度大于中部。色環(huán)的出現(xiàn)不僅影響外觀而且對(duì)高品質(zhì)成像也有影響,對(duì)膜厚差異產(chǎn)生的原因在下面的實(shí)驗(yàn)中進(jìn)行了探索性的研究,為制備高均勻性DLC膜提供了依據(jù),此實(shí)驗(yàn)也是工藝生產(chǎn)中一個(gè)真實(shí)事件。
2 實(shí)驗(yàn)過(guò)程
2.1 實(shí)驗(yàn)設(shè)備
沈陽(yáng)科學(xué)儀器廠生產(chǎn)平行板電容耦合式RF--PECVD設(shè)備,設(shè)備外觀見(jiàn)圖1,設(shè)備內(nèi)部沉積電極結(jié)構(gòu)見(jiàn)圖2。該設(shè)備主要由真空沉積系統(tǒng),真空抽氣系統(tǒng),氣路系統(tǒng),電氣控制系統(tǒng)以及控制面板組成。
需要鍍制的基片是直徑為280mm的硅片,因?yàn)槭请p平片,為了防止背面被設(shè)備的極板劃傷,在基片的底部裝有鋁質(zhì)金屬夾具,夾具的外徑288mm,壓邊1mm深度1mm。鍍制過(guò)程完全按照工藝文件進(jìn)行,當(dāng)基片鍍制完成從真空室取出后,發(fā)現(xiàn)距基片邊緣1厘米左右的環(huán)行區(qū)域內(nèi)的膜層全部脫落,基片中部膜層完好的奇怪現(xiàn)象,在排除了工藝參數(shù)的影響后,最后確定造成這個(gè)問(wèn)題的原因就是1mm深度的金屬夾具。
2.2 分析過(guò)程
射頻放電系統(tǒng)中,一般有一個(gè)電極接地,放電時(shí)在不接地的那個(gè)電極上出現(xiàn)負(fù)的直流偏壓,這就是所謂的電極自偏壓現(xiàn)象。從圖2中可以看到上極板接地,下極板及硅基片工作在負(fù)偏壓狀態(tài)下。輝光放電產(chǎn)生等離子體,源氣體(如甲烷,丁烷等)分解成各種中性粒子和帶電粒子,粒子之間相互碰撞發(fā)生一系列化學(xué)反應(yīng),等離子體中的正離子在負(fù)偏壓的作用向下極板聚集,在硅基片表面形成正離子鞘層,正離子在鞘層中被加速撞擊硅基體表面,在分子量級(jí)上形成高溫高壓,這就是類金剛石膜的成因。
當(dāng)硅基片加裝了金屬夾具后的狀態(tài)見(jiàn)圖3,從圖3中可以明顯的看到由于加裝了金屬夾具使得基片的中部區(qū)域與下極板之間形成懸浮狀態(tài),邊緣則通過(guò)金屬夾具與下極板接觸,也就是說(shuō)同一個(gè)基片的中部和邊緣工作在不同的狀態(tài)下。當(dāng)不帶電的懸浮物插入到等離子體中時(shí),由于等離子體中的電子和正離子都在進(jìn)行熱運(yùn)動(dòng),根據(jù)分子運(yùn)動(dòng)論,在單位時(shí)間內(nèi)落在單位面積上的粒子數(shù)(1.17)ne、 ni分別是等離子體中的電子濃度和正離子濃度,ve、vi 是電子和正離子各自的平均熱運(yùn)動(dòng)速度。如果正離子是單荷的,則ne=ni,所以他們的電流密度分別是(1.18)。
由于等離子體中ve比vi大,所以je>ji。于是懸浮物就出現(xiàn)負(fù)的凈電荷。由于金屬夾具使硅基片與工作在負(fù)偏壓狀態(tài)的下極板連接,因此硅基片處于負(fù)電壓狀態(tài)。等離子體具有集體準(zhǔn)中性特性,當(dāng)帶負(fù)電性的導(dǎo)體進(jìn)入等離子體后其周圍會(huì)有正電荷聚集,以抑制其對(duì)等離子體準(zhǔn)中性的破壞。因此硅基片的表面聚集有正電荷。假設(shè)正電荷形成的電位為Ug,下極板電位即放電區(qū)域最低電位為Us,在懸浮區(qū)域形成一個(gè)電位差為Ug-Us的電場(chǎng),在這個(gè)電場(chǎng)的作用下電子由下基板向硅基片快速移動(dòng)。
為了進(jìn)一步說(shuō)明懸浮區(qū)域?qū)Τ练e的影響,將放電區(qū)域內(nèi)的工作狀態(tài)等效為電路見(jiàn)圖4,圖中R為硅基體上表面的離子鞘層,放電區(qū)域的大部分能量消耗在這部分,即DLC的成膜區(qū)域。R1為金屬夾具與硅片之g的接觸電阻及夾具自身電阻之和,R2為基片的中部懸浮區(qū)域等效電阻。由于它們工作在同一區(qū)域,因此可以等效為并聯(lián)狀態(tài)。圖中A點(diǎn)為離子鞘層上部等離子體的電位(如果忽略上極板的電子鞘層,這個(gè)鞘層的電位差很小,那么A點(diǎn)電位近似為上極板電位);B點(diǎn)為下基板的電位即放電區(qū)域的最低電位。AB之間的電位差UP約等于自偏壓。
根據(jù)并聯(lián)電路的特性我們知道,當(dāng)兩條支路的電阻阻值相差10倍以上,電流幾乎全部從低阻值支路通過(guò)。
以上比值是在假設(shè)電阻率相同的情況下,實(shí)際中R2的電阻率小于R1的電阻率。這是因?yàn)殡S著硅基片表面的正電荷的增加,懸浮區(qū)域鞘層的厚度會(huì)增加,鞘層內(nèi)粒子的運(yùn)動(dòng)速度變快密度變大,根據(jù)公式2可知電流會(huì)變大;懸浮區(qū)域的電子數(shù)增加又會(huì)吸引更多的正電荷,當(dāng)達(dá)到一定值時(shí)懸浮區(qū)域接近導(dǎo)體。因此放電區(qū)域的大部分電流通過(guò)懸浮區(qū)域流通。
放電區(qū)域的電壓是不變的,因?yàn)镽1≥70R2根據(jù)歐姆定律可知I1≤70I2,又根據(jù)電功率的公式P=U×I ,可知P1≤70P2,P1為圖3中深色區(qū)域的功率即金屬夾具與硅基片接觸的環(huán)形區(qū)域,P2為圖3中淺色區(qū)域的面積即懸浮區(qū)域的面積,所以硅片邊緣的功率遠(yuǎn)低于硅片中部的懸浮區(qū)域。
2.3 邊界擾動(dòng)
比功率密度過(guò)低,電場(chǎng)供給反應(yīng)氣體粒子平均能量不足以打開C-H鍵,或讓C鍵合理重組時(shí),不能成膜。過(guò)高時(shí),粒子對(duì)膜層注入能量過(guò)大,會(huì)破壞已形成的C-H鍵,因而也無(wú)法成膜。所以比功率密度必須在一個(gè)合適的范圍內(nèi)。硅基片的下部雖然形成R1R2區(qū)域,但上部的正離子鞘層是一個(gè)整體。假設(shè)兩種極端的情況:第一R2區(qū)域良好的導(dǎo)電性吸引著R1區(qū)域的全部正離子加入其中,則R1區(qū)域的電流為零,根據(jù)電功率的公式則P為零,比功率密度也為零,所以無(wú)法成膜。第二 功率不變,正離子的減少相當(dāng)于比功率密度公式中Py趨近于零,則比功率密度接近無(wú)窮大,因此也無(wú)法形成DLC膜。R1與R2的比值越大這種影響越明顯,就像是一種競(jìng)爭(zhēng)的關(guān)系,結(jié)果愈強(qiáng)則愈強(qiáng),愈弱則愈弱。對(duì)于同一個(gè)基片這種影響還有漸變的范圍,似乎是R1逐漸過(guò)渡到R2,所以脫膜不止在1mm壓邊的環(huán)形區(qū)域里,而是遠(yuǎn)大于它的10mm左右的環(huán)形區(qū)域。我們將這種影響定義為邊緣擾動(dòng)現(xiàn)象,它與相鄰區(qū)域的電阻比值有絕對(duì)關(guān)系,在實(shí)際中確實(shí)發(fā)現(xiàn):直徑小于40mm的硅平片,裝金屬夾具不會(huì)出現(xiàn)邊緣掉膜現(xiàn)象。
2.4 驗(yàn)證試驗(yàn)
當(dāng)把金屬夾具去除,用相同的工藝重新鍍制,邊緣掉膜的現(xiàn)象消失。膜層良好。
為了驗(yàn)證這一結(jié)論,用直徑為:250mm 的硅片兩件,一件裝夾具(SEP1),另一件不裝(SEP2),用相同的工藝鍍制類金剛石膜,鍍制完成后做環(huán)境實(shí)驗(yàn)(環(huán)境實(shí)驗(yàn)條件: 溫度50℃;相對(duì)濕度95%;時(shí)間:24小時(shí)),結(jié)果見(jiàn)表1。
3 結(jié)果與討論
在輝光放電等離子體中,由于電導(dǎo)率不同的相鄰區(qū)域,邊緣出現(xiàn)相互擾動(dòng)的現(xiàn)象,是普遍存在的。以驗(yàn)證試驗(yàn)的SEP2為例,SEP2的膜層出現(xiàn)色環(huán),色環(huán)的出現(xiàn)依然是邊緣擾動(dòng)的結(jié)果,與下基板相比,硅片自身的電阻是不能忽略的,因此在硅片的周邊與基板之間又形成了電導(dǎo)率不同的相鄰區(qū)域,受低電阻率的下基板影響,硅片周邊一定區(qū)域內(nèi)的功率密度也會(huì)增高,造成與中部的沉積速率不同,邊緣沉積速率大于中部。從DLC膜的成膜原理我們知道比功率密度是有一定范圍的,高于或低于這個(gè)范圍都無(wú)法沉積DLC膜。盡管硅片的周邊和中部的功率密度不同,但由于它們都在這個(gè)范圍內(nèi),因此都沉積出良好的DLC膜。
4 結(jié)語(yǔ)
在工藝生產(chǎn)的過(guò)程中S多看似怪異的現(xiàn)象,其實(shí)背后都有本質(zhì)的原因,只要進(jìn)行深入分析研究,就能找到規(guī)律,從而找到解決問(wèn)題的方法,甚至?xí)行碌陌l(fā)現(xiàn)。
參考文獻(xiàn):
在《材料化學(xué)》緒論課的教學(xué)過(guò)程中,采用啟發(fā)引導(dǎo)教學(xué)方式,以“材料、材料與化學(xué)、材料化學(xué)”為主線進(jìn)行教學(xué)設(shè)計(jì),通過(guò)講解材料發(fā)展中的化學(xué),引入材料科學(xué)與化學(xué)的區(qū)別與聯(lián)系,重點(diǎn)從材料結(jié)構(gòu)、制備、性能和應(yīng)用四個(gè)方面講授了材料研究中的化學(xué)問(wèn)題,使學(xué)生對(duì)本課程的內(nèi)容有了清晰的認(rèn)識(shí),激發(fā)了學(xué)生學(xué)習(xí)本課程的信心和興趣,并取得了滿意的教學(xué)效果。
關(guān)鍵詞:
材料化學(xué);緒論課;教學(xué)設(shè)計(jì)
材料化學(xué)是材料科學(xué)與化學(xué)的交叉學(xué)科,伴隨著材料科學(xué)的發(fā)展而誕生和成長(zhǎng),即是材料科學(xué)的重要部分,又是化學(xué)學(xué)科的一個(gè)分支[1]。目前,很多高等學(xué)校的化學(xué)和材料類專業(yè)開設(shè)了《材料化學(xué)》這門課程?!恫牧匣瘜W(xué)》是南陽(yáng)師范學(xué)院材料化學(xué)專業(yè)的核心基礎(chǔ)課程,對(duì)于培養(yǎng)學(xué)生的材料科學(xué)基礎(chǔ)知識(shí),分析和解決材料制備和應(yīng)用中的化學(xué)問(wèn)題的能力起到了關(guān)鍵作用。但是該課程涉及的知識(shí)面廣泛,內(nèi)容龐雜、概念甚多、加上課程改革,理論課時(shí)數(shù)減小,學(xué)生在學(xué)習(xí)《材料化學(xué)》課程過(guò)程中,普遍存在概念混淆、重點(diǎn)難以掌握等問(wèn)題。緒論是一門課程的開場(chǎng)白和宣言書,是師生之間學(xué)習(xí)和交流的起始點(diǎn),能為學(xué)生建立起一門課程的知識(shí)輪廓。通過(guò)對(duì)緒論進(jìn)行學(xué)習(xí),學(xué)生可以了解課程在所學(xué)專業(yè)中所處的地位和作用,以及該課程的教學(xué)內(nèi)容、學(xué)習(xí)方法和考核方式等問(wèn)題[2]。如何激發(fā)學(xué)生學(xué)習(xí)該課程的興趣,提高課程的教學(xué)質(zhì)量,緒論課在整個(gè)課程教學(xué)中有著舉足輕重的地位。結(jié)合近年來(lái)的教學(xué)實(shí)踐,就如何講好《材料化學(xué)》緒論課談一些心得。
1首先明確課程性質(zhì)、特點(diǎn)及地位
教學(xué)之初,首先明確該課程作為專業(yè)核心課程的重要地位,是學(xué)習(xí)后面材料專業(yè)課程的基礎(chǔ)課程,同時(shí)明確考核方式,加強(qiáng)學(xué)生對(duì)本課程的重視程度。材料化學(xué)是材料科學(xué)和化學(xué)學(xué)科的交叉學(xué)科,課程內(nèi)容既涉及工程材料應(yīng)用中的實(shí)際問(wèn)題,又包括材料結(jié)構(gòu)及制備中的化學(xué)問(wèn)題。作為一門交叉學(xué)科,很多知識(shí)點(diǎn)與材料學(xué)和化學(xué)課程中的相關(guān)內(nèi)容重復(fù),很多學(xué)生以為學(xué)過(guò)相關(guān)知識(shí),就會(huì)從思想上松懈。然而,相關(guān)知識(shí)點(diǎn)雖然出現(xiàn)重復(fù),但在不同學(xué)科中講授的重點(diǎn)是不同的。在講授材料化學(xué)課程的過(guò)程中,要著重培養(yǎng)學(xué)生利用化學(xué)的思維解決材料科學(xué)中的問(wèn)題,使學(xué)生深刻領(lǐng)會(huì)化學(xué)與材料科學(xué)交叉的重要意義。通過(guò)一些實(shí)例,講解本課程與化學(xué)和材料相關(guān)課程的區(qū)別和聯(lián)系,使學(xué)生更加深入了本課程的性質(zhì)和地位。材料科學(xué)是偏實(shí)際應(yīng)用的工科課程,化學(xué)是偏理論的理科課程,材料化學(xué)則是利用化學(xué)的理論解決材料應(yīng)用中的實(shí)際問(wèn)題。
2材料
以材料的實(shí)際應(yīng)用為引子,如材料在航天航空、交通運(yùn)輸、電子信息、生物醫(yī)藥等領(lǐng)域的應(yīng)用,帶領(lǐng)學(xué)生進(jìn)入學(xué)習(xí)狀態(tài),引導(dǎo)學(xué)生回想什么是材料?材料的種類?提出材料是對(duì)人類有用的物質(zhì),是人類賴以生存和發(fā)展,征服自然和改造自然的物質(zhì)基礎(chǔ);是人類進(jìn)步的里程碑。然后介紹材料的發(fā)展歷史,說(shuō)明人們對(duì)材料的使用,是從最早的天然材料,依次經(jīng)歷了陶瓷、青銅、鐵、鋼、有色金屬、高分子材料以及新型功能材料。根據(jù)材料的發(fā)展史,啟發(fā)學(xué)生思考材料研究和發(fā)展過(guò)程中的規(guī)律和特點(diǎn)。人們對(duì)材料的使用經(jīng)歷了從天然材料到合成材料,從傳統(tǒng)材料到新興材料。傳統(tǒng)的材料主要以經(jīng)驗(yàn),技藝為基礎(chǔ),材料靠配方篩選和性能測(cè)試,通過(guò)宏觀現(xiàn)象建立的唯象理論對(duì)材料宏觀性能定性解釋,不能預(yù)示性能和指明新材料開發(fā)方向,而新型材料則以基礎(chǔ)理論為指導(dǎo)。材料科學(xué)的歷史表明,當(dāng)一種全新的材料在原子或分子水平上合成后真正巨大的進(jìn)展就常常隨之而來(lái)?;瘜W(xué)的發(fā)展往往導(dǎo)致材料技術(shù)的實(shí)質(zhì)性進(jìn)步。在新材料的研發(fā)和材料工藝的發(fā)展中,化學(xué)一直擔(dān)當(dāng)著關(guān)鍵的角色[3]。任何新材料的獲得都離不開化學(xué),以石墨烯為例,物理學(xué)家主要關(guān)注其電子結(jié)構(gòu)及輸運(yùn)理論,材料學(xué)家主要測(cè)試材料的電磁、光電、傳感和催化等性能,而化學(xué)家的任務(wù)則是利用化學(xué)氣相沉積和插層剝離等方法制備該材料。只有通過(guò)化學(xué)氣相沉積法制備出高質(zhì)量大尺寸的石墨烯,才能推動(dòng)石墨烯在電子信息領(lǐng)域走向?qū)嵱没?/p>
3材料與化學(xué)
材料化學(xué)是材料科學(xué)與化學(xué)學(xué)科的交叉,很多學(xué)生容易混淆材料科學(xué)和化學(xué)的研究范疇。在本課程的第一節(jié)課,一項(xiàng)重要的任務(wù)是使學(xué)生明確材料科學(xué)和化學(xué)的研究?jī)?nèi)容和范疇,這對(duì)于后續(xù)相關(guān)概念的講解至關(guān)重要。材料科學(xué)的研究對(duì)象是材料,材料是對(duì)人類有用的物質(zhì),指的是人類用于制造物品、器件、構(gòu)件、機(jī)器或其他產(chǎn)品的那些物質(zhì)。而化學(xué)的研究對(duì)象是物質(zhì),物質(zhì)是構(gòu)成人類物質(zhì)世界的基礎(chǔ)。材料是物質(zhì),但不是所有物質(zhì)都可以稱為材料;材料科學(xué)是一門研究材料的成分、組織結(jié)構(gòu)、制備工藝與材料性能及應(yīng)用之間相互關(guān)系的科學(xué);而化學(xué)則是從原子和分子角度研究物質(zhì)的組成,結(jié)構(gòu)、性質(zhì)及相互轉(zhuǎn)變規(guī)律的科學(xué)。因此,化學(xué)研究的尺度范圍是原子、分子、分子納米聚集體。材料科學(xué)最早研究的尺度范圍在微米以上,如鋼和陶瓷的組織結(jié)構(gòu)。隨著一些新興材料的出現(xiàn)和發(fā)展,人們對(duì)材料的研究甚至小到電子結(jié)構(gòu)。如近些年發(fā)現(xiàn)的拓?fù)浣^緣體,其表面導(dǎo)電,體內(nèi)不導(dǎo)電的性質(zhì)由其拓?fù)涞哪軒ЫY(jié)構(gòu)決定,而該拓?fù)浣Y(jié)構(gòu)則與電子的自旋運(yùn)動(dòng)有關(guān),研究拓?fù)浣^緣體必須從電子自旋角度認(rèn)識(shí)其結(jié)構(gòu)。因此,材料科學(xué)的研究范疇不斷拓展,并于其它學(xué)科交叉。
4材料化學(xué)
通過(guò)學(xué)習(xí)材料的發(fā)展歷程、材料科學(xué)與化學(xué)之間的區(qū)別和聯(lián)系,學(xué)生已經(jīng)對(duì)材料化學(xué)有了一定的認(rèn)識(shí),引導(dǎo)學(xué)生給材料化學(xué)下一個(gè)定義。材料化學(xué)是關(guān)于材料結(jié)構(gòu)、制備、性能和應(yīng)用的化學(xué)。本校材料化學(xué)專業(yè)選用曾兆華、楊建文編著第二版《材料化學(xué)》作為教材,教材的章節(jié)也是按照材料結(jié)構(gòu)、制備、性能和應(yīng)用進(jìn)行安排的[4]。在這部分內(nèi)容講授過(guò)程中,可以讓學(xué)生以教材目錄為參照,講到相關(guān)內(nèi)容可以與教材相關(guān)章節(jié)進(jìn)行對(duì)應(yīng)。
4.1材料的結(jié)構(gòu)
從三個(gè)層次講解材料的結(jié)構(gòu),分別是電子原子結(jié)構(gòu)、晶體學(xué)結(jié)構(gòu)和組織結(jié)構(gòu)。電子原子結(jié)構(gòu)在很大程度上影響材料的電、磁、熱和光的行為,并可能影響到原子鍵合的方式,因而決定材料的類型。在這個(gè)層次上研究的化學(xué)問(wèn)題主要涉及原子序數(shù)、相對(duì)原子量、電離勢(shì)、電子親核勢(shì)、電負(fù)性、原子及離子半徑等。原子序數(shù)決定了材料的化學(xué)組成,電負(fù)性決定材料內(nèi)部原子之間的鍵合方式,從而影響材料的導(dǎo)電性、強(qiáng)度和熱膨脹系數(shù)等。晶體學(xué)結(jié)構(gòu)主要指原子或分子在空間排列的方式,根據(jù)原子排列的有序性,將材料分為晶體和非晶體。晶體中出現(xiàn)局部無(wú)序,或?qū)硐刖w的產(chǎn)生偏離,則出現(xiàn)缺陷。缺陷的存在影響材料的力學(xué)性能和電學(xué)性能等。如在本征硅內(nèi)部摻雜磷元素,磷原子替代硅原子的位置,形成雜質(zhì)原子缺陷,增加本征硅的導(dǎo)電性,形成N型半導(dǎo)體。組織結(jié)構(gòu)主要指材料的物相組成及結(jié)構(gòu)、晶粒的大小和取向等。在大多數(shù)金屬、某些陶瓷以及個(gè)別聚合物材料內(nèi)部,晶粒之間原子排列的變化,可以改變它們之間的取向,從而影響材料的性能。一般來(lái)說(shuō),減小金屬的晶??梢越档推淙埸c(diǎn)。在這一結(jié)構(gòu)層次上,顆粒的大小和形狀起著關(guān)鍵作用。大多數(shù)材料是多相組成的,控制材料內(nèi)部物相的類型、大小、分布和數(shù)量可以調(diào)控材料的性能。
4.2材料制備
材料合成與制備就是將原子、分子聚集在一起,并轉(zhuǎn)變?yōu)橛杏卯a(chǎn)品的一系列過(guò)程。材料制備的方法和工藝影響材料的結(jié)構(gòu),從而影響材料的性能。根據(jù)制備原理的不同,材料制備方法可以分為物理法和化學(xué)法。物理法指在材料制備過(guò)程中,僅改變材料內(nèi)部原子或分子的聚集狀態(tài),不涉及化學(xué)反應(yīng)的方法。如真空鍍膜、濺射鍍膜、脈沖激光沉積法等?;瘜W(xué)法則在材料制備過(guò)程中,涉及化學(xué)反應(yīng),并且有新物質(zhì)的生成。如固相反應(yīng)法、有機(jī)合成法、水熱法、沉淀法、化學(xué)氣相沉積法等。以石墨烯材料為例講解材料的制備方法。石墨烯作為二維單原子層材料,既可以采用物理法制備,也可以采用化學(xué)法制備。2004年發(fā)現(xiàn)石墨烯的報(bào)道,便是采用簡(jiǎn)單的膠帶對(duì)撕方法制備,該方法依靠外力使石墨片層克服層間范德華力,使層與層之間分離,從而獲得單層石墨,該方法也稱為物理機(jī)械剝離法。利用甲烷、乙烯等烴類氣體作為碳源,鎳、銅、金等金屬作為基片,采用化學(xué)氣相沉積法則可以制備高質(zhì)量大尺寸的石墨烯。另外,以石墨為原料,利用化學(xué)插層剝離的方法也可以用來(lái)制備石墨烯[5]。但不同方法制備獲得石墨烯的尺寸及性能差別較大,在不同的應(yīng)用領(lǐng)域采用的石墨烯制備方法是不同的。
4.3材料性能
材料的性能由其結(jié)構(gòu)決定,與材料制備的工藝和方法有關(guān)。性能是指材料固有的物理、化學(xué)特性,材料性能決定了其應(yīng)用。廣義地說(shuō),性能是材料在一定的條件下對(duì)外部作用的反應(yīng)的定量表述,例如力學(xué)性能是材料對(duì)外力的響應(yīng)、電學(xué)性能是對(duì)電場(chǎng)的響應(yīng)、光學(xué)性能是對(duì)光的響應(yīng)等。因此,材料的性能可分為力學(xué)性能和特殊的物理性能。常見(jiàn)的力學(xué)性能包括材料的強(qiáng)度、硬度、塑性、韌性等。力學(xué)性能決定著材料工作的好壞,同時(shí)也決定著是否易于將材料加工成使用的形狀。鍛造成型的部件必須能夠經(jīng)受快速加載而不破壞,并且還要有足夠的延性才能加工變形成適用的形狀。微小的結(jié)構(gòu)變化往往對(duì)材料的力學(xué)性能產(chǎn)生很大的影響。材料特殊的物理性能包括電、磁、光、熱等行為。物理性能由材料的結(jié)構(gòu)和制造工藝決定。對(duì)于許多半導(dǎo)體金屬和陶瓷材料來(lái)說(shuō),即使成分稍有變化,也會(huì)引起導(dǎo)電性很大變化。過(guò)高的加熱溫度有可能顯著地降低耐火磚的絕熱特性。少量的雜質(zhì)會(huì)改變玻璃或聚合物的顏色。
4.4材料應(yīng)用
材料化學(xué)已經(jīng)滲透到現(xiàn)代科學(xué)技術(shù)的眾多領(lǐng)域,如電子信息、環(huán)境能源、生物醫(yī)藥和航天航空等領(lǐng)域。例如,在電子信息領(lǐng)域,現(xiàn)代芯片制造離不開化學(xué)。光刻過(guò)程使用的光刻膠和顯影液,鍍膜過(guò)程中的化學(xué)氣相沉積和原子層沉積,刻蝕過(guò)程中的反應(yīng)離子刻蝕,這些工藝過(guò)程都離不開化學(xué)的作用。在環(huán)境能源領(lǐng)域,新型光催化材料和太陽(yáng)能電池材料的研究和開發(fā),離不開化學(xué)法制備材料和對(duì)材料進(jìn)行化學(xué)摻雜改性。在生物醫(yī)藥領(lǐng)域,對(duì)傳感材料進(jìn)行化學(xué)改性提高其傳感特性,對(duì)仿生材料進(jìn)行表面改性可以提高其生物相容性。在航天航空領(lǐng)域,各種輕質(zhì)、耐高溫、耐摩擦等結(jié)構(gòu)材料和功能化智能材料的研發(fā)都離不開化學(xué)。
5結(jié)語(yǔ)
通過(guò)對(duì)“材料化學(xué)”緒論課的精心設(shè)計(jì),使學(xué)生明確了該課程的性質(zhì)和重要地位,大量的實(shí)例激發(fā)了學(xué)生學(xué)習(xí)的興趣和求知欲,樹立了學(xué)生學(xué)好該課程的信心,為課程的深入學(xué)習(xí)起到了奠基石的作用。以“材料、材料與化學(xué)、材料化學(xué)”為主線進(jìn)行講授,使學(xué)生對(duì)本課程的內(nèi)容有了更加清晰和深入的認(rèn)識(shí),取得了良好的教學(xué)效果。
參考文獻(xiàn)
[1]禹筱元,羅穎,董先明.材料化學(xué)專業(yè)人才培養(yǎng)模式的改革與實(shí)踐[J].高教論壇,2010,1(1):23-25.
[2]楊卓娟,楊曉東.關(guān)于高校課程緒論教學(xué)的思考[J].中國(guó)大學(xué)教學(xué),2011(12):39-41.
[3]唐小真,楊宏秀,丁馬太.材料化學(xué)導(dǎo)論[M].北京:高等教育出版社,1997.
[4]曾兆華,楊建文.材料化學(xué).2版[M].北京:化學(xué)工業(yè)出版社,2013.
關(guān)鍵詞:微電子封裝;TSV;金屬化;鍵合;DRAM
引言
自1965年“摩爾定律”[1]提出以來(lái),微電子器件的密度幾乎沿著“摩爾定律”的預(yù)言發(fā)展。到了今天,芯片特征尺寸達(dá)到22nm,再想通過(guò)降低特征尺寸來(lái)提高電路密度不僅會(huì)大幅提高成本,還會(huì)降低電路的可靠性。為了提高電路密度,延續(xù)或超越“摩爾定律”,微電子制造由二維向三維發(fā)展成為必然。其方法之一就是將芯片堆疊以后進(jìn)行封裝,由此產(chǎn)生了三維電路封裝技術(shù)(3D IC packaging)。三維電路封裝技術(shù)中,芯片電極是通過(guò)金線鍵合的技術(shù)來(lái)實(shí)現(xiàn)電路的導(dǎo)通。如圖1a所示,隨著芯片疊層的增加,鍵合金線將占用大量的空間。同時(shí)由于連接的延長(zhǎng)使得電路能耗升高、速度降低。因此,業(yè)界需要一種方法,能夠使得硅芯片在堆疊的同時(shí)實(shí)現(xiàn)電路的導(dǎo)通,從而避免采用硅芯片以外的線路連接。傳統(tǒng)半導(dǎo)體工藝主要是針對(duì)硅圓片表明進(jìn)行加工并形成電路,而要實(shí)現(xiàn)硅芯片上下層之間的連接,需要一種能貫通硅芯片的加工工藝,即TSV技術(shù)(圖1b)。早在1958年,半導(dǎo)體的發(fā)明人William Shockley,在其專利中就提到過(guò)硅通孔的制備方法[2]。而TSV(through-silicon via)工藝的概念在1990年代末才提出,香港應(yīng)用技術(shù)研究院和臺(tái)灣半導(dǎo)體制造公司于1998年申請(qǐng)相關(guān)美國(guó)專利[3,4],而關(guān)于TSV技術(shù)最早的于2000年[5]。相比傳統(tǒng)金線鍵合,TSV技術(shù)不僅能減少金線所占用的平面尺寸,由于減少了金線焊點(diǎn)使得Z軸方向達(dá)到最密連接,三維尺寸達(dá)到最小;同時(shí)TSV技術(shù)降低了連接長(zhǎng)度,可有效降低芯片能耗,提高運(yùn)行速度。
(a)金線鍵合技術(shù) (b)TSV技術(shù)
TSV制造工藝分以下幾個(gè)步驟,分別是:通孔制造,絕緣層、阻擋層制備,通孔金屬化,芯片減薄和鍵合??偟脕?lái)說(shuō)TSV技術(shù)難度遠(yuǎn)大于傳統(tǒng)金線鍵合技術(shù)。
1.1 TSV孔制造
雖然TSV稱為硅通孔技術(shù),但是在加工過(guò)程中大多數(shù)是對(duì)盲孔進(jìn)行加工,只有在其后減薄階段打磨芯片底部,露出填充金屬,才使得孔成為真正的通孔。TSV工藝的第一步就是盲孔的制造(圖2a)。TSV的盲孔制造有三種方法,分別是干法刻蝕、濕法刻蝕和激光鉆孔。干法刻蝕是使用等離子氣體轟擊材料表面達(dá)到刻蝕效果的方法;而濕法刻蝕是使用化學(xué)溶劑來(lái)刻蝕材料表面。相比之下干法刻蝕具有刻蝕速率高、方向性好,可以制造大深寬比的孔、刻蝕速率可控性強(qiáng)等優(yōu)點(diǎn),但是相對(duì)成本較高,總得來(lái)說(shuō)干法刻蝕是通孔制造中最常用的方法[6]。而激光打孔加工速率更高,但是由于熱損傷使得通孔的精度下降,因此使用較少。
1.2 絕緣層、阻擋層制備
如圖2 b所示,由于Si是半導(dǎo)體,通常在Si基體上沉積金屬前都需要制備一層絕緣層,絕緣層為SiO2或SiNx,通過(guò)增強(qiáng)等離子體化學(xué)氣相沉積(PECVD)方法制備。另外為了防止金屬擴(kuò)散進(jìn)入基體,還需要在絕緣層上制備一層阻擋層。阻擋層通常由TiNx組成,通過(guò)有機(jī)金屬化學(xué)氣相沉積(MOCVD)制備。
1.3 通孔金屬化
目前TSV金屬化過(guò)程中最常用的金屬是Cu。通孔金屬化是TSV技術(shù)中的難點(diǎn),其成本占TSV工藝成本40%以上。通常芯片制造中,金屬導(dǎo)體層通過(guò)物理氣相沉積(PVD)方法制備。相對(duì)只有幾十納米的導(dǎo)線,若寬度達(dá)到5~100m、深度達(dá)到50~30m的TSV通孔也用PVD方法制備,其所耗費(fèi)的時(shí)間就是業(yè)界所不能允許的。因此TSV中通孔金屬化通常是使用電鍍的方法來(lái)進(jìn)行。但是由于Si基體導(dǎo)電性差,不適合進(jìn)行電沉積,所以金屬化必須分兩步完成金屬化:先使用PVD方法沉積厚度為數(shù)個(gè)納米的種子層(圖2c),使得硅基板具有導(dǎo)電性,然后在進(jìn)行電鍍過(guò)程來(lái)完成金屬化(圖2d)。此方法與大馬士革電鍍相似。
與大馬士革電鍍不同的是由于TSV通孔通常深寬比較大,約在1:1與10:1之間。由于在電鍍過(guò)程中孔口電力線比較密集,若采取傳統(tǒng)電鍍工藝,孔口將快速生長(zhǎng),導(dǎo)致孔洞閉合,使孔內(nèi)難以得到金屬沉積。因此TSV工藝中通常對(duì)鍍液進(jìn)行調(diào)整來(lái)滿足工藝要求,即在鍍液中添加加速劑、抑制劑和整平劑。最常用的加速劑是聚二硫二丙烷磺酸鈉(SPS),SPS能在電鍍中起到催化作用,提高Cu2+沉積速率[7];最常用抑制劑為聚乙二醇(PEG),PEG的存在能較大的抑制電極的活性,從而降低沉積速率。最常用的整平劑為煙魯綠(JGB)。由于PEG分子鏈較大,不容易進(jìn)入通孔內(nèi)部,從而容易聚集在孔口,使得孔口處金屬生長(zhǎng)得到抑制[8]。相反SPS由于分子量較小,更容易進(jìn)入通孔內(nèi)部,特別是聚集在通孔底部,使得通孔底部的金屬生長(zhǎng)得到加速。JGB在生產(chǎn)中是不可缺少的添加劑,它的存在有利于加速劑向微孔中傳質(zhì)[9],同時(shí)JGB會(huì)與PEG純?cè)趨f(xié)同作用,將產(chǎn)生2倍于單獨(dú)添加劑的抑制效果[10]。在加速劑、抑制劑和整平劑的共同作用下金屬化過(guò)程自底部而上,使整個(gè)通孔都得到填充。
關(guān)鍵詞:晶體硅薄膜;CulnSe2薄膜;商業(yè)化
中圖分類號(hào):TM914.42 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1672-8882(2015)05-117-02
近幾年來(lái),光伏市場(chǎng)發(fā)展極其迅速,1997年光伏組件的銷售量達(dá)122Vw,比上年增加38%。世界主要幾大公司宣稱,近期光伏組件產(chǎn)量將會(huì)增加到263.5MW,其中薄膜太陽(yáng)電池將達(dá)到91.5MW,占太陽(yáng)電池總量的34.7%??焖侔l(fā)展的光伏市場(chǎng)導(dǎo)致許多太陽(yáng)電池生產(chǎn)廠家力求擴(kuò)大生產(chǎn)能力,開辟大容量的太陽(yáng)電池生產(chǎn)線。但目前太陽(yáng)電池用硅材料大部分來(lái)源于半導(dǎo)體硅材料的等外品和單晶硅的頭尾料,不能滿足光伏工業(yè)發(fā)展的需要。同時(shí)硅材料正是構(gòu)成晶體硅太陽(yáng)電池組件成本中很難降低的部分,因此為了適應(yīng)太陽(yáng)電池高效率、低成本、大規(guī)模生產(chǎn)化發(fā)展的要求,最有效的辦法是不采用由硅原料、硅錠、硅片到太陽(yáng)電池的工藝路線,而采用直接由原材料到太陽(yáng)電他的工藝路線,即發(fā)展薄膜太陽(yáng)電他的技術(shù)。
一、晶體硅薄膜太陽(yáng)電池發(fā)展
晶體硅薄膜太陽(yáng)電池,近年來(lái)在國(guó)外發(fā)展比較迅速。為了使晶體硅薄膜太陽(yáng)電池達(dá)到商業(yè)化,努力將實(shí)驗(yàn)室結(jié)果推向市場(chǎng),1988年制造出100cm2的薄膜太陽(yáng)電池,其轉(zhuǎn)換效率為8%。18個(gè)月后,其效率在同樣面積下達(dá)到10.9%,3年半后12kw薄膜太陽(yáng)電池系統(tǒng)投入市場(chǎng)。1994年底美國(guó)加利福尼亞區(qū)成功建立了17.1kW硅薄膜太陽(yáng)電池方陣系統(tǒng),這個(gè)系統(tǒng)電池是利用高溫?zé)岱纸鈬娡糠ㄖ苽涞?。在薄膜電池上覆蓋了一層抗反射層,硅薄膜晶粒為毫米級(jí),具有宏觀結(jié)構(gòu)特性,減少了蘭色和遠(yuǎn)紅外光的響應(yīng)。
1997年召開的26屆IEEE PVSC,14屆歐洲PVSEC和世界太陽(yáng)能大會(huì)報(bào)道了Uvited Solar Systemn薄膜硅太陽(yáng)電池,轉(zhuǎn)換效率為16.6%,日本的Kanebo為9.8%,美國(guó)NREL提供的測(cè)試結(jié)果,USSA的Si/SiGe/SiGe薄膜電池,面積為903cm2,轉(zhuǎn)換效率為10.2%,功率為9.2W。
我國(guó)晶體硅薄膜太陽(yáng)電他的研究仍處于實(shí)驗(yàn)室階段。1982年長(zhǎng)春應(yīng)用化學(xué)研究所韓桂林等人用CVD法,在系統(tǒng)中采用高頻加熱石墨,系統(tǒng)抽真空后通氖氣以驅(qū)除殘留氣體,加熱石墨至所需溫度,隨即通入混合氣體,在1100℃-1250℃下,SiCl4被H2還原,硅沉積在襯底上。研究了多晶硅薄膜的生長(zhǎng)規(guī)律并對(duì)膜的基本物理特性進(jìn)行研究。1998年北京市太陽(yáng)能研究所趙玉文等報(bào)道了以SiH2Cl2為原料氣體,采用快速熱化學(xué)氣相沉積(RTCVD)工藝在石英反應(yīng)器中沉積多晶硅薄膜。氣源為H2和SiH2Cl2的混合物,石英管內(nèi)配有石墨樣品托架,采用程控光源將石墨樣品托架加熱到1200℃。試驗(yàn)所用襯底為重?fù)诫s磷非活性單晶硅片或非硅質(zhì)底材。在1030℃下薄膜生長(zhǎng)速率為10nm/s,研究了薄膜生長(zhǎng)特性,薄膜的微結(jié)構(gòu),并研制了多晶硅薄膜電池,電池結(jié)構(gòu)為金屬柵線/p+多晶硅膜/n多晶硅膜/n++C-硅/金屬接觸。采用擴(kuò)硼形成p+層,結(jié)深約為1?m,電池面積為1cm2,AM1.5、100mV/cm2條件下,無(wú)減反射涂層,電池轉(zhuǎn)換效率為4.54%,Jsc=14.3mA/cm2,Voc=0.460V,F(xiàn)F=0.67。
我國(guó)晶體硅薄膜太陽(yáng)電池研究水平與國(guó)際水平相差較大,應(yīng)加速發(fā)展。在廉價(jià)襯底上形成高質(zhì)量的多晶硅薄膜,研究襯底與硅膜之間夾層,用以阻擋雜質(zhì)向硅膜擴(kuò)散,并研制出具有較高轉(zhuǎn)換效率的多晶硅薄膜電池,在近期內(nèi)使其轉(zhuǎn)換效率能達(dá)到10%左右,為工業(yè)化生產(chǎn)作準(zhǔn)備,以期成本能降低到$1/w左右。
二、國(guó)內(nèi)CulnSe2薄膜太陽(yáng)電池發(fā)展情況
我國(guó)的CulnSe2薄膜太陽(yáng)電池研究始于80年代中期。內(nèi)蒙古大學(xué)、南開大學(xué)、云南師范大學(xué)、中國(guó)科學(xué)院長(zhǎng)春應(yīng)用化學(xué)研究所等單位先后開展了這項(xiàng)研究。1986年長(zhǎng)春應(yīng)用化學(xué)研究所用噴涂法制備了C1S薄膜。薄膜具有黃銅礦結(jié)構(gòu),并制備了全噴涂C1S/CdS太陽(yáng)電池,電池具有光伏效應(yīng)。1990年內(nèi)蒙古大學(xué)采用雙源法,研制了pin CdS/CulnSe2薄膜太陽(yáng)電池,經(jīng)天津電源研究所測(cè)試,面積為0.9cm×0.9cm,效率為8.5%。南開大學(xué)采用蒸發(fā)硒化法制作CulnSe/C北薄膜太陽(yáng)電池,面積為0.1cm2和lcm2的太陽(yáng)電池,其效率分別達(dá)到7.62%和7.28%,5cm×5cm電他的平均效率為6.67%。
我國(guó)該技術(shù)仍處于實(shí)驗(yàn)室階段,而且處于較低的水平,投入很少,進(jìn)展緩慢。因此,急需加快研究和開發(fā)力度,加大對(duì)薄膜太陽(yáng)電他的投入,盡快向工業(yè)化生產(chǎn)過(guò)渡,將薄膜太陽(yáng)電池作為21世紀(jì)優(yōu)先發(fā)展的高科技項(xiàng)目。近期內(nèi),對(duì)CulnSe2薄膜太陽(yáng)電池的研制,通過(guò)控制Se、In、Cu三元素配比和蒸發(fā)速率,以獲得重復(fù)性好、化學(xué)計(jì)量比符合要求,具有黃銅礦結(jié)構(gòu)的硒鋼銅薄膜,用化學(xué)成膜法制備致密和均勻的CdS薄膜,用濺射法制備ZnO薄膜。期望近期內(nèi),光伏轉(zhuǎn)換效率能達(dá)到10%左右,為21世紀(jì)大規(guī)模發(fā)展Cu1nSe2薄膜太陽(yáng)電池奠定基礎(chǔ)。
三、薄膜光伏的商業(yè)化
在過(guò)去的幾年,世界光伏市場(chǎng)以每年45%的增幅在快速發(fā)展,不斷有新的公司進(jìn)入市場(chǎng),基于CIGS和CdTe的薄膜光伏市場(chǎng)化也取得了進(jìn)展,并在很多領(lǐng)域廣泛應(yīng)用(包括屋頂計(jì)劃和建筑物等)。2006年,整個(gè)世界范圍內(nèi)薄膜光伏的市場(chǎng)份額小于6%,然而在美國(guó)薄膜光伏的市場(chǎng)份額高達(dá)44%,這主要得益于位于奧爾良的First Solar和密歇根的United Solar,這2個(gè)公司在2006年取得長(zhǎng)足進(jìn)展。 中機(jī)院-專注于園區(qū)規(guī)劃、產(chǎn)業(yè)研究、產(chǎn)業(yè)規(guī)劃、城市發(fā)展規(guī)劃、投融資服務(wù)
世界上很多薄膜光伏公司從事a-Si、CIGS和CdTe的商業(yè)化發(fā)展,美國(guó)也有很多致力于此的公司,在CIGS和CdTe研究方面取得的進(jìn)展和技術(shù)進(jìn)步足以支持其往兆瓦級(jí)的生產(chǎn)轉(zhuǎn)化。在美國(guó)有16家公司從事非晶硅和薄硅的商業(yè)化進(jìn)程,很顯然,其中的領(lǐng)跑者為密歇根的Uni-Solar,其在2006年產(chǎn)能為60MW,而2007年的產(chǎn)能達(dá)到120MW。美國(guó)薄膜光伏的快速發(fā)展得益于美國(guó)國(guó)家再生能源實(shí)驗(yàn)室(NREL)在多結(jié)太陽(yáng)電池技術(shù)上的成就;Applied Material則可提供單結(jié)非晶硅和納米硅疊層太陽(yáng)電池“交鑰匙”工程,迄今為止,已在包括中國(guó)、印度、德國(guó)、西班牙等世界各地裝機(jī)超過(guò)200MW。目前美國(guó)有15家公司采用不同的吸收層沉積技術(shù)開展CIGS業(yè)務(wù),機(jī)會(huì)和挑戰(zhàn)在這兒并存;同時(shí)有8個(gè)公司從事CdTe薄膜光伏的市場(chǎng)化運(yùn)作。
目前世界上有5個(gè)公司致力于CIGS薄膜光伏的商業(yè)化生產(chǎn),主要是德國(guó)的Wurth Solar、美國(guó)的Global Solar、日本本田、日本昭和殼牌和德國(guó)的Sulfurcell,其年產(chǎn)量介于5MW至27MW之間。同時(shí)有34家公司正在開發(fā)CIGS薄膜太陽(yáng)電池生產(chǎn)技術(shù),采用了約10種不同的吸收層沉積技術(shù)。在生產(chǎn)中,不論吸收層是采用共蒸發(fā)法還是兩步法(如濺射后硒化),在所有技術(shù)路線中均采用濺射法制備Mo底電極以及濺射或化學(xué)氣相沉積法制備ZnO薄膜。
參考文獻(xiàn):
[1] Goetzberger A;Hebling C Photovoltaic. materials,past,present,future [外文期刊] 2000(1/2) DOI:10.1016/S0927-0248(99)00131-2.
關(guān)鍵詞:梯度功能材料,復(fù)合材料,研究進(jìn)展
Abstract :This paper introduces the concept ,types,capability,preparation methods of functionally graded materials. Based upon analysis of the present application situations and prospect of this kind of materials some problems existed are presented. The current status of the research of FGM are discussed and an anticipation of its future development is also present.
Key words :FGM;composite;the Advance
0 引言
信息、能源、材料是現(xiàn)代科學(xué)技術(shù)和社會(huì)發(fā)展的三大支柱。現(xiàn)代高科技的競(jìng)爭(zhēng)在很大程度上依賴于材料科學(xué)的發(fā)展。對(duì)材料,特別是對(duì)高性能材料的認(rèn)識(shí)水平、掌握和應(yīng)用能力,直接體現(xiàn)國(guó)家的科學(xué)技術(shù)水平和經(jīng)濟(jì)實(shí)力,也是一個(gè)國(guó)家綜合國(guó)力和社會(huì)文明進(jìn)步速度的標(biāo)志。因此,新材料的開發(fā)與研究是材料科學(xué)發(fā)展的先導(dǎo),是21世紀(jì)高科技領(lǐng)域的基石。
近年來(lái),材料科學(xué)獲得了突飛猛進(jìn)的發(fā)展[1]。究其原因,一方面是各個(gè)學(xué)科的交叉滲透引入了新理論、新方法及新的實(shí)驗(yàn)技術(shù);另一方面是實(shí)際應(yīng)用的迫切需要對(duì)材料提出了新的要求。而FGM即是為解決實(shí)際生產(chǎn)應(yīng)用問(wèn)題而產(chǎn)生的一種新型復(fù)合材料,這種材料對(duì)新一代航天飛行器突破“小型化”,“輕質(zhì)化”,“高性能化”和“多功能化”具有舉足輕重的作用[2],并且它也可廣泛用于其它領(lǐng)域,所以它是近年來(lái)在材料科學(xué)中涌現(xiàn)出的研究熱點(diǎn)之一。
1 FGM概念的提出
當(dāng)代航天飛機(jī)等高新技術(shù)的發(fā)展,對(duì)材料性能的要求越來(lái)越苛刻。例如:當(dāng)航天飛機(jī)往返大氣層,飛行速度超過(guò)25個(gè)馬赫數(shù),其表面溫度高達(dá)2000℃。而其燃燒室內(nèi)燃燒氣體溫度可超過(guò)2000℃,燃燒室的熱流量大于5MW/m2, 其空氣入口的前端熱通量達(dá)5MW/m2.對(duì)于如此大的熱量必須采取冷卻措施,一般將用作燃料的液氫作為強(qiáng)制冷卻的冷卻劑,此時(shí)燃燒室內(nèi)外要承受高達(dá)1000K以上的溫差,傳統(tǒng)的單相均勻材料已無(wú)能為力[1]。若采用多相復(fù)合材料,如金屬基陶瓷涂層材料,由于各相的熱脹系數(shù)和熱應(yīng)力的差別較大,很容易在相界處出現(xiàn)涂層剝落[3]或龜裂[1]現(xiàn)象,其關(guān)鍵在于基底和涂層間存在有一個(gè)物理性能突變的界面。為解決此類極端條件下常規(guī)耐熱材料的不足,日本學(xué)者新野正之、平井敏雄和渡邊龍三人于1987年首次提出了梯度功能材料的概念[1],即以連續(xù)變化的組分梯度來(lái)代替突變界面,消除物理性能的突變,使熱應(yīng)力降至最小[3]。
隨著研究的不斷深入,梯度功能材料的概念也得到了發(fā)展。目前梯度功能材料(FGM)是指以計(jì)算機(jī)輔助材料設(shè)計(jì)為基礎(chǔ),采用先進(jìn)復(fù)合技術(shù),使構(gòu)成材料的要素(組成、結(jié)構(gòu))沿厚度方向有一側(cè)向另一側(cè)成連續(xù)變化,從而使材料的性質(zhì)和功能呈梯度變化的新型材料[4]。
2 FGM的特性和分類
2.1 FGM的特殊性能
由于FGM的材料組分是在一定的空間方向上連續(xù)變化的特點(diǎn)如圖2,因此它能有效地克服傳統(tǒng)復(fù)合材料的不足[5]。正如Erdogan在其論文[6]中指出的與傳統(tǒng)復(fù)合材料相比FGM有如下優(yōu)勢(shì):
1)將FGM用作界面層來(lái)連接不相容的兩種材料,可以大大地提高粘結(jié)強(qiáng)度;
2)將FGM用作涂層和界面層可以減小殘余應(yīng)力和熱應(yīng)力;
3)將FGM用作涂層和界面層可以消除連接材料中界面交叉點(diǎn)以及應(yīng)力自由端點(diǎn)的應(yīng)力奇異性;
4)用FGM代替?zhèn)鹘y(tǒng)的均勻材料涂層,既可以增強(qiáng)連接強(qiáng)度也可以減小裂紋驅(qū)動(dòng)力。
2.2 FGM的分類
根據(jù)不同的分類標(biāo)準(zhǔn)FGM有多種分類方式。根據(jù)材料的組合方式,F(xiàn)GM分為金屬/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多種組合方式的材料[1];根據(jù)其組成變化FGM分為梯度功能整體型(組成從一側(cè)到另一側(cè)呈梯度漸變的結(jié)構(gòu)材料),梯度功能涂敷型(在基體材料上形成組成漸變的涂層),梯度功能連接型(連接兩個(gè)基體間的界面層呈梯度變化)[1];根據(jù)不同的梯度性質(zhì)變化分為密度FGM,成分FGM,光學(xué)FGM,精細(xì)FGM等[4];根據(jù)不同的應(yīng)用領(lǐng)域有可分為耐熱FGM,生物、化學(xué)工程FGM,電子工程FGM等[7]。
3 FGM的應(yīng)用
FGM最初是從航天領(lǐng)域發(fā)展起來(lái)的。隨著FGM 研究的不斷深入,人們發(fā)現(xiàn)利用組分、結(jié)構(gòu)、性能梯度的變化,可制備出具有聲、光、電、磁等特性的FGM,并可望應(yīng)用于許多領(lǐng)域。
功 能
應(yīng) 用 領(lǐng) 域 材 料 組 合
緩和熱應(yīng)
力功能及
結(jié)合功能
航天飛機(jī)的超耐熱材料
陶瓷引擎
耐磨耗損性機(jī)械部件
耐熱性機(jī)械部件
耐蝕性機(jī)械部件
加工工具
運(yùn)動(dòng)用具:建材 陶瓷 金屬
陶瓷 金屬
塑料 金屬
異種金屬
異種陶瓷
金剛石 金屬
碳纖維 金屬 塑料
核功能
原子爐構(gòu)造材料
核融合爐內(nèi)壁材料
放射性遮避材料 輕元素 高強(qiáng)度材料
耐熱材料 遮避材料
耐熱材料 遮避材料
生物相溶性
及醫(yī)學(xué)功能
人工牙齒牙根
人工骨
人工關(guān)節(jié)
人工內(nèi)臟器官:人工血管
補(bǔ)助感覺(jué)器官
生命科學(xué) 磷灰石 氧化鋁
磷灰石 金屬
磷灰石 塑料
異種塑料
硅芯片 塑料
電磁功能
電磁功能 陶瓷過(guò)濾器
超聲波振動(dòng)子
IC
磁盤
磁頭
電磁鐵
長(zhǎng)壽命加熱器
超導(dǎo)材料
電磁屏避材料
高密度封裝基板 壓電陶瓷 塑料
壓電陶瓷 塑料
硅 化合物半導(dǎo)體
多層磁性薄膜
金屬 鐵磁體
金屬 鐵磁體
金屬 陶瓷
金屬 超導(dǎo)陶瓷
塑料 導(dǎo)電性材料
陶瓷 陶瓷
光學(xué)功能 防反射膜
光纖;透鏡;波選擇器
多色發(fā)光元件
玻璃激光 透明材料 玻璃
折射率不同的材料
不同的化合物半導(dǎo)體
稀土類元素 玻璃
能源轉(zhuǎn)化功能
MHD 發(fā)電
電極;池內(nèi)壁
熱電變換發(fā)電
燃料電池
地?zé)岚l(fā)電
太陽(yáng)電池 陶瓷 高熔點(diǎn)金屬
金屬 陶瓷
金屬 硅化物
陶瓷 固體電解質(zhì)
金屬 陶瓷
電池硅、鍺及其化合物
4 FGM的研究
FGM研究?jī)?nèi)容包括材料設(shè)計(jì)、材料制備和材料性能評(píng)價(jià)。
4. 1 FGM設(shè)計(jì)
FGM設(shè)計(jì)是一個(gè)逆向設(shè)計(jì)過(guò)程[7]。
首先確定材料的最終結(jié)構(gòu)和應(yīng)用條件,然后從FGM設(shè)計(jì)數(shù)據(jù)庫(kù)中選擇滿足使用條件的材料組合、過(guò)渡組份的性能及微觀結(jié)構(gòu),以及制備和評(píng)價(jià)方法,最后基于上述結(jié)構(gòu)和材料組合選擇,根據(jù)假定的組成成份分布函數(shù),計(jì)算出體系的溫度分布和熱應(yīng)力分布。如果調(diào)整假定的組成成份分布函數(shù),就有可能計(jì)算出FGM體系中最佳的溫度分布和熱應(yīng)力分布,此時(shí)的組成分布函數(shù)即最佳設(shè)計(jì)參數(shù)。
FGM設(shè)計(jì)主要構(gòu)成要素有三:
1)確定結(jié)構(gòu)形狀,熱—力學(xué)邊界條件和成分分布函數(shù);
2)確定各種物性數(shù)據(jù)和復(fù)合材料熱物性參數(shù)模型;
3)采用適當(dāng)?shù)臄?shù)學(xué)—力學(xué)計(jì)算方法,包括有限元方法計(jì)算FGM的應(yīng)力分布,采用通用的和自行開發(fā)的軟件進(jìn)行計(jì)算機(jī)輔助設(shè)計(jì)。
FGM設(shè)計(jì)的特點(diǎn)是與材料的制備工藝緊密結(jié)合,借助于計(jì)算機(jī)輔助設(shè)計(jì)系統(tǒng),得出最優(yōu)的設(shè)計(jì)方案。
4. 2 FGM的制備
FGM制備研究的主要目標(biāo)是通過(guò)合適的手段,實(shí)現(xiàn)FGM組成成份、微觀結(jié)構(gòu)能夠按設(shè)計(jì)分布,從而實(shí)現(xiàn)FGM的設(shè)計(jì)性能??煞譃榉勰┲旅芊?如粉末冶金法(PM) ,自蔓延高溫合成法(SHS) ;涂層法:如等離子噴涂法,激光熔覆法,電沉積法,氣相沉積包含物理氣相沉積(PVD) 和化學(xué)相沉積(CVD) ;形變與馬氏體相變[10、14]。
4. 2. 1 粉末冶金法(PM)
PM法是先將原料粉末按設(shè)計(jì)的梯度成分成形,然后燒結(jié)。通過(guò)控制和調(diào)節(jié)原料粉末的粒度分布和燒結(jié)收縮的均勻性,可獲得熱應(yīng)力緩和的FGM。粉末冶金法可靠性高,適用于制造形狀比較簡(jiǎn)單的FGM部件,但工藝比較復(fù)雜,制備的FGM有一定的孔隙率,尺寸受模具限制[7]。常用的燒結(jié)法有常壓燒結(jié)、熱壓燒結(jié)、熱等靜壓燒結(jié)及反應(yīng)燒結(jié)等。這種工藝比較適合制備大體積的材料。PM法具有設(shè)備簡(jiǎn)單、易于操作和成本低等優(yōu)點(diǎn),但要對(duì)保溫溫度、保溫時(shí)間和冷卻速度進(jìn)行嚴(yán)格控制。國(guó)內(nèi)外利用粉末冶金方法已制備出的FGM有:MgC/ Ni 、ZrO2/ W、Al2O3/ ZrO2 [8]、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等[7] 。
4. 2. 2 自蔓延燃燒高溫合成法(Self-propagating High-temperature Synthesis 簡(jiǎn)稱SHS或Combustion Synthesis)
SHS 法是前蘇聯(lián)科學(xué)家Merzhanov 等在1967 年研究Ti和B的燃燒反應(yīng)時(shí),發(fā)現(xiàn)的一種合成材料的新技術(shù)。其原理是利用外部能量加熱局部粉體引燃化學(xué)反應(yīng),此后化學(xué)反應(yīng)在自身放熱的支持下,自動(dòng)持續(xù)地蔓延下去, 利用反應(yīng)熱將粉末燒結(jié)成材,最后合成新的化合物。其反應(yīng)示意圖如圖6所示[16]:
SHS 法具有產(chǎn)物純度高、效率高、成本低、工藝相對(duì)簡(jiǎn)單的特點(diǎn)。并且適合制造大尺寸和形狀復(fù)雜的FGM。但SHS法僅適合存在高放熱反應(yīng)的材料體系,金屬與陶瓷的發(fā)熱量差異大,燒結(jié)程度不同,較難控制,因而影響材料的致密度,孔隙率較大,機(jī)械強(qiáng)度較低。目前利用SHS 法己制備出Al/ TiB2 , Cu/ TiB2 、Ni/ TiC[8] 、Nb-N、Ti-Al等系功能梯度材料[7、11]。
4. 2. 3 噴涂法
噴涂法主要是指等離子體噴涂工藝,適用于形狀復(fù)雜的材料和部件的制備。通常,將金屬和陶瓷的原料粉末分別通過(guò)不同的管道輸送到等離子噴槍內(nèi),并在熔化的狀態(tài)下將它噴鍍?cè)诨w的表面上形成梯度功能材料涂層。可以通過(guò)計(jì)算機(jī)程序控制粉料的輸送速度和流量來(lái)得到設(shè)計(jì)所要求的梯度分布函數(shù)。這種工藝已經(jīng)被廣泛地用來(lái)制備耐熱合金發(fā)動(dòng)機(jī)葉片的熱障涂層上,其成分是部分穩(wěn)定氧化鋯(PSZ)陶瓷和NiCrAlY合金[9]。
4. 2. 3. 1 等離子噴涂法(PS)
PS 法的原理是等離子氣體被電子加熱離解成電子和離子的平衡混合物,形成等離子體,其溫度高達(dá)1 500 K,同時(shí)處于高度壓縮狀態(tài),所具有的能量極大。等離子體通過(guò)噴嘴時(shí)急劇膨脹形成亞音速或超音速的等離子流,速度可高達(dá)1. 5 km/ s。原料粉末送至等離子射流中,粉末顆粒被加熱熔化,有時(shí)還會(huì)與等離子體發(fā)生復(fù)雜的冶金化學(xué)反應(yīng),隨后被霧化成細(xì)小的熔滴,噴射在基底上,快速冷卻固結(jié),形成沉積層。噴涂過(guò)程中改變陶瓷與金屬的送粉比例,調(diào)節(jié)等離子射流的溫度及流速,即可調(diào)整成分與組織,獲得梯度涂層[8、11]。該法的優(yōu)點(diǎn)是可以方便的控制粉末成分的組成,沉積效率高,無(wú)需燒結(jié),不受基體面積大小的限制,比較容易得到大面積的塊材[10],但梯度涂層與基體間的結(jié)合強(qiáng)度不高,并存在涂層組織不均勻,空洞疏松,表面粗糙等缺陷。采用此法己制備出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al[7] 、NiCrAl/MgO -ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料
4.2.3.2 激光熔覆法
激光熔覆法是將預(yù)先設(shè)計(jì)好組分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便會(huì)產(chǎn)生用B合金化的A薄涂層,并焊接到B基底表面上,形成第一包覆層。改變注入粉末的組成配比,在上述覆層熔覆的同時(shí)注入,在垂直覆層方向上形成組分的變化。重復(fù)以上過(guò)程,就可以獲得任意多層的FGM。用Ti-A1合金熔覆Ti用顆粒陶瓷增強(qiáng)劑熔覆金屬獲得了梯度多層結(jié)構(gòu)。梯度的變化可以通過(guò)控制初始涂層A的數(shù)量和厚度,以及熔區(qū)的深度來(lái)獲得,熔區(qū)的深度本身由激光的功率和移動(dòng)速度來(lái)控制。該工藝可以顯著改善基體材料表面的耐磨、耐蝕、耐熱及電氣特性和生物活性等性能,但由于激光溫度過(guò)高,涂層表面有時(shí)會(huì)出現(xiàn)裂紋或孔洞,并且陶瓷顆粒與金屬往往發(fā)生化學(xué)反應(yīng)[10]。采用此法可制備Ti - Al 、WC -Ni 、Al - SiC 系梯度功能材料[7 ] 。
4.2.3.3 熱噴射沉積[10]
與等離子噴涂有些相關(guān)的一種工藝是熱噴涂。用這種工藝把先前熔化的金屬射流霧化,并噴涂到基底上凝固,因此,建立起一層快速凝固的材料。通過(guò)將增強(qiáng)粒子注射到金屬流束中,這種工藝已被推廣到制造復(fù)合材料中。陶瓷增強(qiáng)顆粒,典型的如SiC或Al2O3,一般保持固態(tài),混入金屬液滴而被涂覆在基底,形成近致密的復(fù)合材料。在噴涂沉積過(guò)程中,通過(guò)連續(xù)地改變?cè)鰪?qiáng)顆粒的饋送速率,熱噴涂沉積已被推廣產(chǎn)生梯度6061鋁合金/SiC復(fù)合材料??梢允褂脽岬褥o壓工序以消除梯度復(fù)合材料中的孔隙。
4.2.3.4 電沉積法
電沉積法是一種低溫下制備FGM的化學(xué)方法。該法利用電鍍的原理,將所選材料的懸浮液置于兩電極間的外場(chǎng)中,通過(guò)注入另一相的懸浮液使之混合,并通過(guò)控制鍍液流速、電流密度或粒子濃度,在電場(chǎng)作用下電荷的懸浮顆粒在電極上沉積下來(lái),最后得到FGM膜或材料[8]。所用的基體材料可以是金屬、塑料、陶瓷或玻璃,涂層的主要材料為TiO2-Ni, Cu-Ni ,SiC-Cu,Cu-Al2O3等。此法可以在固體基體材料的表面獲得金屬、合金或陶瓷的沉積層,以改變固體材料的表面特性,提高材料表面的耐磨損性、耐腐蝕性或使材料表面具有特殊的電磁功能、光學(xué)功能、熱物理性能,該工藝由于對(duì)鍍層材料的物理力學(xué)性能破壞小、設(shè)備簡(jiǎn)單、操作方便、成型壓力和溫度低,精度易控制,生產(chǎn)成本低廉等顯著優(yōu)點(diǎn)而備受材料研究者的關(guān)注。但該法只適合于制造薄箔型功能梯度材料。[8、10]
4.2.3.5 氣相沉積法
氣相沉積是利用具有活性的氣態(tài)物質(zhì)在基體表面成膜的技術(shù)。通過(guò)控制彌散相濃度,在厚度方向上實(shí)現(xiàn)組分的梯度化,適合于制備薄膜型及平板型FGM[8]。該法可以制備大尺寸的功能梯度材料,但合成速度低,一般不能制備出大厚度的梯度膜,與基體結(jié)合強(qiáng)度低、設(shè)備比較復(fù)雜。采用此法己制備出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。氣相沉積按機(jī)理的不同分為物理氣相沉積(PVD) 和化學(xué)氣相沉積(CVD) 兩類。
化學(xué)氣相沉積法(CVD)是將兩相氣相均質(zhì)源輸送到反應(yīng)器中進(jìn)行均勻混合,在熱基板上發(fā)生化學(xué)反應(yīng)并使反映產(chǎn)物沉積在基板上。通過(guò)控制反應(yīng)氣體的壓力、組成及反應(yīng)溫度,精確地控制材料的組成、結(jié)構(gòu)和形態(tài),并能使其組成、結(jié)構(gòu)和形態(tài)從一種組分到另一種組分連續(xù)變化,可得到按設(shè)計(jì)要求的FGM。另外,該法無(wú)須燒結(jié)即可制備出致密而性能優(yōu)異的FGM,因而受到人們的重視。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制備過(guò)程包括:氣相反應(yīng)物的形成;氣相反應(yīng)物傳輸?shù)匠练e區(qū)域;固體產(chǎn)物從氣相中沉積與襯底[12]。
物理氣相沉積法(PVD)是通過(guò)加熱固相源物質(zhì),使其蒸發(fā)為氣相,然后沉積于基材上,形成約100μm 厚度的致密薄膜。加熱金屬的方法有電阻加熱、電子束轟擊、離子濺射等。PVD 法的特點(diǎn)是沉積溫度低,對(duì)基體熱影響小,但沉積速度慢。日本科技廳金屬材料研究所用該法制備出Ti/ TiN、Ti/ TiC、Cr/ CrN 系的FGM [7~8、10~11]
4. 2. 4 形變與馬氏體相變[8]
通過(guò)伴隨的應(yīng)變變化,馬氏體相變能在所選擇的材料中提供一個(gè)附加的被稱作“相變塑性”的變形機(jī)制。借助這種機(jī)制在恒溫下形成的馬氏體量隨材料中的應(yīng)力和變形量的增加而增加。因此,在合適的溫度范圍內(nèi),可以通過(guò)施加應(yīng)變(或等價(jià)應(yīng)力) 梯度,在這種材料中產(chǎn)生應(yīng)力誘發(fā)馬氏體體積分?jǐn)?shù)梯度。這一方法在順磁奧氏體18 -8 不銹鋼(Fe -18% ,Cr -8 %Ni) 試樣內(nèi)部獲得了鐵磁馬氏體α體積分?jǐn)?shù)的連續(xù)變化。這種工藝雖然明顯局限于一定的材料范圍,但能提供一個(gè)簡(jiǎn)單的方法,可以一步生產(chǎn)含有飽和磁化強(qiáng)度連續(xù)變化的材料,這種材料對(duì)于位置測(cè)量裝置的制造有潛在的應(yīng)用前景。
4. 3 FGM的特性評(píng)價(jià)
功能梯度材料的特征評(píng)價(jià)是為了進(jìn)一步優(yōu)化成分設(shè)計(jì),為成分設(shè)計(jì)數(shù)據(jù)庫(kù)提供實(shí)驗(yàn)數(shù)據(jù),目前已開發(fā)出局部熱應(yīng)力試驗(yàn)評(píng)價(jià)、熱屏蔽性能評(píng)價(jià)和熱性能測(cè)定、機(jī)械強(qiáng)度測(cè)定等四個(gè)方面。這些評(píng)價(jià)技術(shù)還停留在功能梯度材料物性值試驗(yàn)測(cè)定等基礎(chǔ)性的工作上[7]。目前,對(duì)熱壓力緩和型的FGM主要就其隔熱性能、熱疲勞功能、耐熱沖擊特性、熱壓力緩和性能以及機(jī)械性能進(jìn)行評(píng)價(jià)[8]。目前,日本、美國(guó)正致力于建立統(tǒng)一的標(biāo)準(zhǔn)特征評(píng)價(jià)體系[7~8]。
5 FGM的研究發(fā)展方向
5.1 存在的問(wèn)題
作為一種新型功能材料,梯度功能材料范圍廣泛,性能特殊,用途各異。尚存在一些問(wèn)題需要進(jìn)一步的研究和解決,主要表現(xiàn)在以下一些方面[5、13]:
1)梯度材料設(shè)計(jì)的數(shù)據(jù)庫(kù)(包括材料體系、物性參數(shù)、材料制備和性能評(píng)價(jià)等)還需要補(bǔ)充、收集、歸納、整理和完善;
2)尚需要進(jìn)一步研究和探索統(tǒng)一的、準(zhǔn)確的材料物理性質(zhì)模型,揭示出梯度材料物理性能與成分分布,微觀結(jié)構(gòu)以及制備條件的定量關(guān)系,為準(zhǔn)確、可靠地預(yù)測(cè)梯度材料物理性能奠定基礎(chǔ);
3)隨著梯度材料除熱應(yīng)力緩和以外用途的日益增加,必須研究更多的物性模型和設(shè)計(jì)體系,為梯度材料在多方面研究和應(yīng)用開辟道路;
4)尚需完善連續(xù)介質(zhì)理論、量子(離散)理論、滲流理論及微觀結(jié)構(gòu)模型,并借助計(jì)算機(jī)模擬對(duì)材料性能進(jìn)行理論預(yù)測(cè),尤其需要研究材料的晶面(或界面)。
5)已制備的梯度功能材料樣品的體積小、結(jié)構(gòu)簡(jiǎn)單,還不具有較多的實(shí)用價(jià)值;
6)成本高。
5.2 FGM制備技術(shù)總的研究趨勢(shì)[13、15、19-20]
1)開發(fā)的低成本、自動(dòng)化程度高、操作簡(jiǎn)便的制備技術(shù);
2)開發(fā)大尺寸和復(fù)雜形狀的FGM制備技術(shù);
3)開發(fā)更精確控制梯度組成的制備技術(shù)(高性能材料復(fù)合技術(shù));
4)深入研究各種先進(jìn)的制備工藝機(jī)理,特別是其中的光、電、磁特性。
5.3 對(duì)FGM的性能評(píng)價(jià)進(jìn)行研究[2、13]
有必要從以下5個(gè)方面進(jìn)行研究:
1)熱穩(wěn)定性,即在溫度梯度下成分分布隨 時(shí)間變化關(guān)系問(wèn)題;
2)熱絕緣性能;
3)熱疲勞、熱沖擊和抗震性;
4)抗極端環(huán)境變化能力;
5)其他性能評(píng)價(jià),如熱電性能、壓電性能、光學(xué)性能和磁學(xué)性能等
6 結(jié)束語(yǔ)
FGM 的出現(xiàn)標(biāo)志著現(xiàn)代材料的設(shè)計(jì)思想進(jìn)入了高性能新型材料的開發(fā)階段[8]。FGM的研究和開發(fā)應(yīng)用已成為當(dāng)前材料科學(xué)的前沿課題。目前正在向多學(xué)科交叉,多產(chǎn)業(yè)結(jié)合,國(guó)際化合作的方向發(fā)展。
參考文獻(xiàn)
[1] 楊瑞成,丁旭,陳奎等.材料科學(xué)與材料世界[M].北京:化學(xué)工業(yè)出版社,2006.
[2] 李永,宋健,張志民等.梯度功能力學(xué)[ M].北京:清華大學(xué)出版社.2003.
[3]王豫,姚凱倫.功能梯度材料研究的現(xiàn)狀與將來(lái)發(fā)展[J].物理,2000,29(4):206-211.
[4] 曾黎明.功能復(fù)合材料及其應(yīng)用[M]. 北京:化學(xué)工業(yè)出版社,2007.
[5] 高曉霞,姜曉紅,田東艷等。功能梯度材料研究的進(jìn)展綜述[J]. 山西建筑,2006, 32(5):143-144.
[6] Erdogan, F.Fracture mechanics of functionally graded materials[J].Compos. Engng,1995(5):753-770.
[7] 李智慧,何小鳳,李運(yùn)剛等. 功能梯度材料的研究現(xiàn)狀[J]. 河北理工學(xué)院學(xué)報(bào),2007, 29(1):45-50.
[8] 李楊,雷發(fā)茂,姚敏,李慶文等.梯度功能材料的研究進(jìn)展[J]. 菏澤學(xué)院學(xué)報(bào),2007, 29(5):51-55.
[9] 林峰.梯度功能材料的研究與應(yīng)用[J].廣東技術(shù)師范學(xué)院學(xué)報(bào),2006,6:1-4.
[10] 龐建超,高福寶,曹曉明.功能梯度材料的發(fā)展與制備方法的研究[J]. 金屬制品,2005,31(4):4-9.
[11] 戈曉嵐,趙茂程.工程材料[ M].南京:東南大學(xué)出版社,2004.
[12] 唐小真.材料化學(xué)導(dǎo)論[M].北京:高等教育出版社,2007.
[13] 李進(jìn),田興華.功能梯度材料的研究現(xiàn)狀及應(yīng)用[J]. 寧夏工程技術(shù),2007, 6(1):80-83.
[14] 戴起勛,趙玉濤.材料科學(xué)研究方法[M] .北京:國(guó)防工業(yè)出版社,2005.
[15] 邵立勤.新材料領(lǐng)域未來(lái)發(fā)展方向 [J]. 新材料產(chǎn)業(yè), 2004,1:25-30.
[16] 自蔓延高溫合成法.材料工藝及應(yīng)用etsc.hnu.cn/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm
[17] 遠(yuǎn)立賢.金屬/陶瓷功能梯度涂層工藝的應(yīng)用現(xiàn)狀.91th.com/articleview/2006-6-6/article_view_405.htm.
[18] 工程材料. col.njtu.edu.cn/zskj/3021/gccl/CH2/2.6.4.htm.
關(guān)鍵詞:梯度功能材料,復(fù)合材料,研究進(jìn)展
Abstract:Thispaperintroducestheconcept,types,capability,preparationmethodsoffunctionallygradedmaterials.Baseduponanalysisofthepresentapplicationsituationsandprospectofthiskindofmaterialssomeproblemsexistedarepresented.ThecurrentstatusoftheresearchofFGMarediscussedandananticipationofitsfuturedevelopmentisalsopresent.
Keywords:FGM;composite;theAdvance
0引言
信息、能源、材料是現(xiàn)代科學(xué)技術(shù)和社會(huì)發(fā)展的三大支柱。現(xiàn)代高科技的競(jìng)爭(zhēng)在很大程度上依賴于材料科學(xué)的發(fā)展。對(duì)材料,特別是對(duì)高性能材料的認(rèn)識(shí)水平、掌握和應(yīng)用能力,直接體現(xiàn)國(guó)家的科學(xué)技術(shù)水平和經(jīng)濟(jì)實(shí)力,也是一個(gè)國(guó)家綜合國(guó)力和社會(huì)文明進(jìn)步速度的標(biāo)志。因此,新材料的開發(fā)與研究是材料科學(xué)發(fā)展的先導(dǎo),是21世紀(jì)高科技領(lǐng)域的基石。
近年來(lái),材料科學(xué)獲得了突飛猛進(jìn)的發(fā)展[1]。究其原因,一方面是各個(gè)學(xué)科的交叉滲透引入了新理論、新方法及新的實(shí)驗(yàn)技術(shù);另一方面是實(shí)際應(yīng)用的迫切需要對(duì)材料提出了新的要求。而FGM即是為解決實(shí)際生產(chǎn)應(yīng)用問(wèn)題而產(chǎn)生的一種新型復(fù)合材料,這種材料對(duì)新一代航天飛行器突破“小型化”,“輕質(zhì)化”,“高性能化”和“多功能化”具有舉足輕重的作用[2],并且它也可廣泛用于其它領(lǐng)域,所以它是近年來(lái)在材料科學(xué)中涌現(xiàn)出的研究熱點(diǎn)之一。
1FGM概念的提出
當(dāng)代航天飛機(jī)等高新技術(shù)的發(fā)展,對(duì)材料性能的要求越來(lái)越苛刻。例如:當(dāng)航天飛機(jī)往返大氣層,飛行速度超過(guò)25個(gè)馬赫數(shù),其表面溫度高達(dá)2000℃。而其燃燒室內(nèi)燃燒氣體溫度可超過(guò)2000℃,燃燒室的熱流量大于5MW/m2,其空氣入口的前端熱通量達(dá)5MW/m2.對(duì)于如此大的熱量必須采取冷卻措施,一般將用作燃料的液氫作為強(qiáng)制冷卻的冷卻劑,此時(shí)燃燒室內(nèi)外要承受高達(dá)1000K以上的溫差,傳統(tǒng)的單相均勻材料已無(wú)能為力[1]。若采用多相復(fù)合材料,如金屬基陶瓷涂層材料,由于各相的熱脹系數(shù)和熱應(yīng)力的差別較大,很容易在相界處出現(xiàn)涂層剝落[3]或龜裂[1]現(xiàn)象,其關(guān)鍵在于基底和涂層間存在有一個(gè)物理性能突變的界面。為解決此類極端條件下常規(guī)耐熱材料的不足,日本學(xué)者新野正之、平井敏雄和渡邊龍三人于1987年首次提出了梯度功能材料的概念[1],即以連續(xù)變化的組分梯度來(lái)代替突變界面,消除物理性能的突變,使熱應(yīng)力降至最小[3]。
隨著研究的不斷深入,梯度功能材料的概念也得到了發(fā)展。目前梯度功能材料(FGM)是指以計(jì)算機(jī)輔助材料設(shè)計(jì)為基礎(chǔ),采用先進(jìn)復(fù)合技術(shù),使構(gòu)成材料的要素(組成、結(jié)構(gòu))沿厚度方向有一側(cè)向另一側(cè)成連續(xù)變化,從而使材料的性質(zhì)和功能呈梯度變化的新型材料[4]。
2FGM的特性和分類
2.1FGM的特殊性能
由于FGM的材料組分是在一定的空間方向上連續(xù)變化的特點(diǎn)如圖2,因此它能有效地克服傳統(tǒng)復(fù)合材料的不足[5]。正如Erdogan在其論文[6]中指出的與傳統(tǒng)復(fù)合材料相比FGM有如下優(yōu)勢(shì):
1)將FGM用作界面層來(lái)連接不相容的兩種材料,可以大大地提高粘結(jié)強(qiáng)度;
2)將FGM用作涂層和界面層可以減小殘余應(yīng)力和熱應(yīng)力;
3)將FGM用作涂層和界面層可以消除連接材料中界面交叉點(diǎn)以及應(yīng)力自由端點(diǎn)的應(yīng)力奇異性;
4)用FGM代替?zhèn)鹘y(tǒng)的均勻材料涂層,既可以增強(qiáng)連接強(qiáng)度也可以減小裂紋驅(qū)動(dòng)力。
2.2FGM的分類
根據(jù)不同的分類標(biāo)準(zhǔn)FGM有多種分類方式。根據(jù)材料的組合方式,F(xiàn)GM分為金屬/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多種組合方式的材料[1];根據(jù)其組成變化FGM分為梯度功能整體型(組成從一側(cè)到另一側(cè)呈梯度漸變的結(jié)構(gòu)材料),梯度功能涂敷型(在基體材料上形成組成漸變的涂層),梯度功能連接型(連接兩個(gè)基體間的界面層呈梯度變化)[1];根據(jù)不同的梯度性質(zhì)變化分為密度FGM,成分FGM,光學(xué)FGM,精細(xì)FGM等[4];根據(jù)不同的應(yīng)用領(lǐng)域有可分為耐熱FGM,生物、化學(xué)工程FGM,電子工程FGM等[7]。
3FGM的應(yīng)用
FGM最初是從航天領(lǐng)域發(fā)展起來(lái)的。隨著FGM研究的不斷深入,人們發(fā)現(xiàn)利用組分、結(jié)構(gòu)、性能梯度的變化,可制備出具有聲、光、電、磁等特性的FGM,并可望應(yīng)用于許多領(lǐng)域。
功能
應(yīng)用領(lǐng)域材料組合
緩和熱應(yīng)
力功能及
結(jié)合功能
航天飛機(jī)的超耐熱材料
陶瓷引擎
耐磨耗損性機(jī)械部件
耐熱性機(jī)械部件
耐蝕性機(jī)械部件
加工工具
運(yùn)動(dòng)用具:建材陶瓷金屬
陶瓷金屬
塑料金屬
異種金屬
異種陶瓷
金剛石金屬
碳纖維金屬塑料
核功能
原子爐構(gòu)造材料
核融合爐內(nèi)壁材料
放射性遮避材料輕元素高強(qiáng)度材料
耐熱材料遮避材料
耐熱材料遮避材料
生物相溶性
及醫(yī)學(xué)功能
人工牙齒牙根
人工骨
人工關(guān)節(jié)
人工內(nèi)臟器官:人工血管
補(bǔ)助感覺(jué)器官
生命科學(xué)磷灰石氧化鋁
磷灰石金屬
磷灰石塑料
異種塑料
硅芯片塑料
電磁功能
電磁功能陶瓷過(guò)濾器
超聲波振動(dòng)子
IC
磁盤
磁頭
電磁鐵
長(zhǎng)壽命加熱器
超導(dǎo)材料
電磁屏避材料
高密度封裝基板壓電陶瓷塑料
壓電陶瓷塑料
硅化合物半導(dǎo)體
多層磁性薄膜
金屬鐵磁體
金屬鐵磁體
金屬陶瓷
金屬超導(dǎo)陶瓷
塑料導(dǎo)電性材料
陶瓷陶瓷
光學(xué)功能防反射膜
光纖;透鏡;波選擇器
多色發(fā)光元件
玻璃激光透明材料玻璃
折射率不同的材料
不同的化合物半導(dǎo)體
稀土類元素玻璃
能源轉(zhuǎn)化功能
MHD發(fā)電
電極;池內(nèi)壁
熱電變換發(fā)電
燃料電池
地?zé)岚l(fā)電
太陽(yáng)電池陶瓷高熔點(diǎn)金屬
金屬陶瓷
金屬硅化物
陶瓷固體電解質(zhì)
金屬陶瓷
電池硅、鍺及其化合物
4FGM的研究
FGM研究?jī)?nèi)容包括材料設(shè)計(jì)、材料制備和材料性能評(píng)價(jià)。
4.1FGM設(shè)計(jì)
FGM設(shè)計(jì)是一個(gè)逆向設(shè)計(jì)過(guò)程[7]。
首先確定材料的最終結(jié)構(gòu)和應(yīng)用條件,然后從FGM設(shè)計(jì)數(shù)據(jù)庫(kù)中選擇滿足使用條件的材料組合、過(guò)渡組份的性能及微觀結(jié)構(gòu),以及制備和評(píng)價(jià)方法,最后基于上述結(jié)構(gòu)和材料組合選擇,根據(jù)假定的組成成份分布函數(shù),計(jì)算出體系的溫度分布和熱應(yīng)力分布。如果調(diào)整假定的組成成份分布函數(shù),就有可能計(jì)算出FGM體系中最佳的溫度分布和熱應(yīng)力分布,此時(shí)的組成分布函數(shù)即最佳設(shè)計(jì)參數(shù)。
FGM設(shè)計(jì)主要構(gòu)成要素有三:
1)確定結(jié)構(gòu)形狀,熱—力學(xué)邊界條件和成分分布函數(shù);
2)確定各種物性數(shù)據(jù)和復(fù)合材料熱物性參數(shù)模型;
3)采用適當(dāng)?shù)臄?shù)學(xué)—力學(xué)計(jì)算方法,包括有限元方法計(jì)算FGM的應(yīng)力分布,采用通用的和自行開發(fā)的軟件進(jìn)行計(jì)算機(jī)輔助設(shè)計(jì)。
FGM設(shè)計(jì)的特點(diǎn)是與材料的制備工藝緊密結(jié)合,借助于計(jì)算機(jī)輔助設(shè)計(jì)系統(tǒng),得出最優(yōu)的設(shè)計(jì)方案。
4.2FGM的制備
FGM制備研究的主要目標(biāo)是通過(guò)合適的手段,實(shí)現(xiàn)FGM組成成份、微觀結(jié)構(gòu)能夠按設(shè)計(jì)分布,從而實(shí)現(xiàn)FGM的設(shè)計(jì)性能。可分為粉末致密法:如粉末冶金法(PM),自蔓延高溫合成法(SHS);涂層法:如等離子噴涂法,激光熔覆法,電沉積法,氣相沉積包含物理氣相沉積(PVD)和化學(xué)相沉積(CVD);形變與馬氏體相變[10、14]。
4.2.1粉末冶金法(PM)
PM法是先將原料粉末按設(shè)計(jì)的梯度成分成形,然后燒結(jié)。通過(guò)控制和調(diào)節(jié)原料粉末的粒度分布和燒結(jié)收縮的均勻性,可獲得熱應(yīng)力緩和的FGM。粉末冶金法可靠性高,適用于制造形狀比較簡(jiǎn)單的FGM部件,但工藝比較復(fù)雜,制備的FGM有一定的孔隙率,尺寸受模具限制[7]。常用的燒結(jié)法有常壓燒結(jié)、熱壓燒結(jié)、熱等靜壓燒結(jié)及反應(yīng)燒結(jié)等。這種工藝比較適合制備大體積的材料。PM法具有設(shè)備簡(jiǎn)單、易于操作和成本低等優(yōu)點(diǎn),但要對(duì)保溫溫度、保溫時(shí)間和冷卻速度進(jìn)行嚴(yán)格控制。國(guó)內(nèi)外利用粉末冶金方法已制備出的FGM有:MgC/Ni、ZrO2/W、Al2O3/ZrO2[8]、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等[7]。
4.2.2自蔓延燃燒高溫合成法(Self-propagatingHigh-temperatureSynthesis簡(jiǎn)稱SHS或CombustionSynthesis)
SHS法是前蘇聯(lián)科學(xué)家Merzhanov等在1967年研究Ti和B的燃燒反應(yīng)時(shí),發(fā)現(xiàn)的一種合成材料的新技術(shù)。其原理是利用外部能量加熱局部粉體引燃化學(xué)反應(yīng),此后化學(xué)反應(yīng)在自身放熱的支持下,自動(dòng)持續(xù)地蔓延下去,利用反應(yīng)熱將粉末燒結(jié)成材,最后合成新的化合物。其反應(yīng)示意圖如圖6所示[16]:
SHS法具有產(chǎn)物純度高、效率高、成本低、工藝相對(duì)簡(jiǎn)單的特點(diǎn)。并且適合制造大尺寸和形狀復(fù)雜的FGM。但SHS法僅適合存在高放熱反應(yīng)的材料體系,金屬與陶瓷的發(fā)熱量差異大,燒結(jié)程度不同,較難控制,因而影響材料的致密度,孔隙率較大,機(jī)械強(qiáng)度較低。目前利用SHS法己制備出Al/TiB2,Cu/TiB2、Ni/TiC[8]、Nb-N、Ti-Al等系功能梯度材料[7、11]。
4.2.3噴涂法
噴涂法主要是指等離子體噴涂工藝,適用于形狀復(fù)雜的材料和部件的制備。通常,將金屬和陶瓷的原料粉末分別通過(guò)不同的管道輸送到等離子噴槍內(nèi),并在熔化的狀態(tài)下將它噴鍍?cè)诨w的表面上形成梯度功能材料涂層??梢酝ㄟ^(guò)計(jì)算機(jī)程序控制粉料的輸送速度和流量來(lái)得到設(shè)計(jì)所要求的梯度分布函數(shù)。這種工藝已經(jīng)被廣泛地用來(lái)制備耐熱合金發(fā)動(dòng)機(jī)葉片的熱障涂層上,其成分是部分穩(wěn)定氧化鋯(PSZ)陶瓷和NiCrAlY合金[9]。
4.2.3.1等離子噴涂法(PS)
PS法的原理是等離子氣體被電子加熱離解成電子和離子的平衡混合物,形成等離子體,其溫度高達(dá)1500K,同時(shí)處于高度壓縮狀態(tài),所具有的能量極大。等離子體通過(guò)噴嘴時(shí)急劇膨脹形成亞音速或超音速的等離子流,速度可高達(dá)1.5km/s。原料粉末送至等離子射流中,粉末顆粒被加熱熔化,有時(shí)還會(huì)與等離子體發(fā)生復(fù)雜的冶金化學(xué)反應(yīng),隨后被霧化成細(xì)小的熔滴,噴射在基底上,快速冷卻固結(jié),形成沉積層。噴涂過(guò)程中改變陶瓷與金屬的送粉比例,調(diào)節(jié)等離子射流的溫度及流速,即可調(diào)整成分與組織,獲得梯度涂層[8、11]。該法的優(yōu)點(diǎn)是可以方便的控制粉末成分的組成,沉積效率高,無(wú)需燒結(jié),不受基體面積大小的限制,比較容易得到大面積的塊材[10],但梯度涂層與基
體間的結(jié)合強(qiáng)度不高,并存在涂層組織不均勻,空洞疏松,表面粗糙等缺陷。采用此法己制備出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al[7]、NiCrAl/MgO-ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料
4.2.3.2激光熔覆法
激光熔覆法是將預(yù)先設(shè)計(jì)好組分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便會(huì)產(chǎn)生用B合金化的A薄涂層,并焊接到B基底表面上,形成第一包覆層。改變注入粉末的組成配比,在上述覆層熔覆的同時(shí)注入,在垂直覆層方向上形成組分的變化。重復(fù)以上過(guò)程,就可以獲得任意多層的FGM。用Ti-A1合金熔覆Ti用顆粒陶瓷增強(qiáng)劑熔覆金屬獲得了梯度多層結(jié)構(gòu)。梯度的變化可以通過(guò)控制初始涂層A的數(shù)量和厚度,以及熔區(qū)的深度來(lái)獲得,熔區(qū)的深度本身由激光的功率和移動(dòng)速度來(lái)控制。該工藝可以顯著改善基體材料表面的耐磨、耐蝕、耐熱及電氣特性和生物活性等性能,但由于激光溫度過(guò)高,涂層表面有時(shí)會(huì)出現(xiàn)裂紋或孔洞,并且陶瓷顆粒與金屬往往發(fā)生化學(xué)反應(yīng)[10]。采用此法可制備Ti-Al、WC-Ni、Al-SiC系梯度功能材料[7]。
4.2.3.3熱噴射沉積[10]
與等離子噴涂有些相關(guān)的一種工藝是熱噴涂。用這種工藝把先前熔化的金屬射流霧化,并噴涂到基底上凝固,因此,建立起一層快速凝固的材料。通過(guò)將增強(qiáng)粒子注射到金屬流束中,這種工藝已被推廣到制造復(fù)合材料中。陶瓷增強(qiáng)顆粒,典型的如SiC或Al2O3,一般保持固態(tài),混入金屬液滴而被涂覆在基底,形成近致密的復(fù)合材料。在噴涂沉積過(guò)程中,通過(guò)連續(xù)地改變?cè)鰪?qiáng)顆粒的饋送速率,熱噴涂沉積已被推廣產(chǎn)生梯度6061鋁合金/SiC復(fù)合材料。可以使用熱等靜壓工序以消除梯度復(fù)合材料中的孔隙。
4.2.3.4電沉積法
電沉積法是一種低溫下制備FGM的化學(xué)方法。該法利用電鍍的原理,將所選材料的懸浮液置于兩電極間的外場(chǎng)中,通過(guò)注入另一相的懸浮液使之混合,并通過(guò)控制鍍液流速、電流密度或粒子濃度,在電場(chǎng)作用下電荷的懸浮顆粒在電極上沉積下來(lái),最后得到FGM膜或材料[8]。所用的基體材料可以是金屬、塑料、陶瓷或玻璃,涂層的主要材料為TiO2-Ni,Cu-Ni,SiC-Cu,Cu-Al2O3等。此法可以在固體基體材料的表面獲得金屬、合金或陶瓷的沉積層,以改變固體材料的表面特性,提高材料表面的耐磨損性、耐腐蝕性或使材料表面具有特殊的電磁功能、光學(xué)功能、熱物理性能,該工藝由于對(duì)鍍層材料的物理力學(xué)性能破壞小、設(shè)備簡(jiǎn)單、操作方便、成型壓力和溫度低,精度易控制,生產(chǎn)成本低廉等顯著優(yōu)點(diǎn)而備受材料研究者的關(guān)注。但該法只適合于制造薄箔型功能梯度材料。[8、10]
4.2.3.5氣相沉積法
氣相沉積是利用具有活性的氣態(tài)物質(zhì)在基體表面成膜的技術(shù)。通過(guò)控制彌散相濃度,在厚度方向上實(shí)現(xiàn)組分的梯度化,適合于制備薄膜型及平板型FGM[8]。該法可以制備大尺寸的功能梯度材料,但合成速度低,一般不能制備出大厚度的梯度膜,與基體結(jié)合強(qiáng)度低、設(shè)備比較復(fù)雜。采用此法己制備出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。氣相沉積按機(jī)理的不同分為物理氣相沉積(PVD)和化學(xué)氣相沉積(CVD)兩類。
化學(xué)氣相沉積法(CVD)是將兩相氣相均質(zhì)源輸送到反應(yīng)器中進(jìn)行均勻混合,在熱基板上發(fā)生化學(xué)反應(yīng)并使反映產(chǎn)物沉積在基板上。通過(guò)控制反應(yīng)氣體的壓力、組成及反應(yīng)溫度,精確地控制材料的組成、結(jié)構(gòu)和形態(tài),并能使其組成、結(jié)構(gòu)和形態(tài)從一種組分到另一種組分連續(xù)變化,可得到按設(shè)計(jì)要求的FGM。另外,該法無(wú)須燒結(jié)即可制備出致密而性能優(yōu)異的FGM,因而受到人們的重視。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制備過(guò)程包括:氣相反應(yīng)物的形成;氣相反應(yīng)物傳輸?shù)匠练e區(qū)域;固體產(chǎn)物從氣相中沉積與襯底[12]。
物理氣相沉積法(PVD)是通過(guò)加熱固相源物質(zhì),使其蒸發(fā)為氣相,然后沉積于基材上,形成約100μm厚度的致密薄膜。加熱金屬的方法有電阻加熱、電子束轟擊、離子濺射等。PVD法的特點(diǎn)是沉積溫度低,對(duì)基體熱影響小,但沉積速度慢。日本科技廳金屬材料研究所用該法制備出Ti/TiN、Ti/TiC、Cr/CrN系的FGM[7~8、10~11]
4.2.4形變與馬氏體相變[8]
通過(guò)伴隨的應(yīng)變變化,馬氏體相變能在所選擇的材料中提供一個(gè)附加的被稱作“相變塑性”的變形機(jī)制。借助這種機(jī)制在恒溫下形成的馬氏體量隨材料中的應(yīng)力和變形量的增加而增加。因此,在合適的溫度范圍內(nèi),可以通過(guò)施加應(yīng)變(或等價(jià)應(yīng)力)梯度,在這種材料中產(chǎn)生應(yīng)力誘發(fā)馬氏體體積分?jǐn)?shù)梯度。這一方法在順磁奧氏體18-8不銹鋼(Fe-18%,Cr-8%Ni)試樣內(nèi)部獲得了鐵磁馬氏體α體積分?jǐn)?shù)的連續(xù)變化。這種工藝雖然明顯局限于一定的材料范圍,但能提供一個(gè)簡(jiǎn)單的方法,可以一步生產(chǎn)含有飽和磁化強(qiáng)度連續(xù)變化的材料,這種材料對(duì)于位置測(cè)量裝置的制造有潛在的應(yīng)用前景。
4.3FGM的特性評(píng)價(jià)
功能梯度材料的特征評(píng)價(jià)是為了進(jìn)一步優(yōu)化成分設(shè)計(jì),為成分設(shè)計(jì)數(shù)據(jù)庫(kù)提供實(shí)驗(yàn)數(shù)據(jù),目前已開發(fā)出局部熱應(yīng)力試驗(yàn)評(píng)價(jià)、熱屏蔽性能評(píng)價(jià)和熱性能測(cè)定、機(jī)械強(qiáng)度測(cè)定等四個(gè)方面。這些評(píng)價(jià)技術(shù)還停留在功能梯度材料物性值試驗(yàn)測(cè)定等基礎(chǔ)性的工作上[7]。目前,對(duì)熱壓力緩和型的FGM主要就其隔熱性能、熱疲勞功能、耐熱沖擊特性、熱壓力緩和性能以及機(jī)械性能進(jìn)行評(píng)價(jià)[8]。目前,日本、美國(guó)正致力于建立統(tǒng)一的標(biāo)準(zhǔn)特征評(píng)價(jià)體系[7~8]。
5FGM的研究發(fā)展方向
5.1存在的問(wèn)題
作為一種新型功能材料,梯度功能材料范圍廣泛,性能特殊,用途各異。尚存在一些問(wèn)題需要進(jìn)一步的研究和解決,主要表現(xiàn)在以下一些方面[5、13]:
1)梯度材料設(shè)計(jì)的數(shù)據(jù)庫(kù)(包括材料體系、物性參數(shù)、材料制備和性能評(píng)價(jià)等)還需要補(bǔ)充、收集、歸納、整理和完善;
2)尚需要進(jìn)一步研究和探索統(tǒng)一的、準(zhǔn)確的材料物理性質(zhì)模型,揭示出梯度材料物理性能與成分分布,微觀結(jié)構(gòu)以及制備條件的定量關(guān)系,為準(zhǔn)確、可靠地預(yù)測(cè)梯度材料物理性能奠定基礎(chǔ);
3)隨著梯度材料除熱應(yīng)力緩和以外用途的日益增加,必須研究更多的物性模型和設(shè)計(jì)體系,為梯度材料在多方面研究和應(yīng)用開辟道路;
4)尚需完善連續(xù)介質(zhì)理論、量子(離散)理論、滲流理論及微觀結(jié)構(gòu)模型,并借助計(jì)算機(jī)模擬對(duì)材料性能進(jìn)行理論預(yù)測(cè),尤其需要研究材料的晶面(或界面)。
5)已制備的梯度功能材料樣品的體積小、結(jié)構(gòu)簡(jiǎn)單,還不具有較多的實(shí)用價(jià)值;
6)成本高。
5.2FGM制備技術(shù)總的研究趨勢(shì)[13、15、19-
20]
1)開發(fā)的低成本、自動(dòng)化程度高、操作簡(jiǎn)便的制備技術(shù);
2)開發(fā)大尺寸和復(fù)雜形狀的FGM制備技術(shù);
3)開發(fā)更精確控制梯度組成的制備技術(shù)(高性能材料復(fù)合技術(shù));
4)深入研究各種先進(jìn)的制備工藝機(jī)理,特別是其中的光、電、磁特性。
5.3對(duì)FGM的性能評(píng)價(jià)進(jìn)行研究[2、13]
有必要從以下5個(gè)方面進(jìn)行研究:
1)熱穩(wěn)定性,即在溫度梯度下成分分布隨時(shí)間變化關(guān)系問(wèn)題;
2)熱絕緣性能;
3)熱疲勞、熱沖擊和抗震性;
4)抗極端環(huán)境變化能力;
5)其他性能評(píng)價(jià),如熱電性能、壓電性能、光學(xué)性能和磁學(xué)性能等
6結(jié)束語(yǔ)
FGM的出現(xiàn)標(biāo)志著現(xiàn)代材料的設(shè)計(jì)思想進(jìn)入了高性能新型材料的開發(fā)階段[8]。FGM的研究和開發(fā)應(yīng)用已成為當(dāng)前材料科學(xué)的前沿課題。目前正在向多學(xué)科交叉,多產(chǎn)業(yè)結(jié)合,國(guó)際化合作的方向發(fā)展。
參考文獻(xiàn):
[1]楊瑞成,丁旭,陳奎等.材料科學(xué)與材料世界[M].北京:化學(xué)工業(yè)出版社,2006.
[2]李永,宋健,張志民等.梯度功能力學(xué)[M].北京:清華大學(xué)出版社.2003.
[3]王豫,姚凱倫.功能梯度材料研究的現(xiàn)狀與將來(lái)發(fā)展[J].物理,2000,29(4):206-211.
[4]曾黎明.功能復(fù)合材料及其應(yīng)用[M].北京:化學(xué)工業(yè)出版社,2007.
[5]高曉霞,姜曉紅,田東艷等。功能梯度材料研究的進(jìn)展綜述[J].山西建筑,2006,32(5):143-144.
[6]Erdogan,F.Fracturemechanicsoffunctionallygradedmaterials[J].Compos.Engng,1995(5):753-770.
[7]李智慧,何小鳳,李運(yùn)剛等.功能梯度材料的研究現(xiàn)狀[J].河北理工學(xué)院學(xué)報(bào),2007,29(1):45-50.
[8]李楊,雷發(fā)茂,姚敏,李慶文等.梯度功能材料的研究進(jìn)展[J].菏澤學(xué)院學(xué)報(bào),2007,29(5):51-55.
[9]林峰.梯度功能材料的研究與應(yīng)用[J].廣東技術(shù)師范學(xué)院學(xué)報(bào),2006,6:1-4.
[10]龐建超,高福寶,曹曉明.功能梯度材料的發(fā)展與制備方法的研究[J].金屬制品,2005,31(4):4-9.
[11]戈曉嵐,趙茂程.工程材料[M].南京:東南大學(xué)出版社,2004.
[12]唐小真.材料化學(xué)導(dǎo)論[M].北京:高等教育出版社,2007.
[13]李進(jìn),田興華.功能梯度材料的研究現(xiàn)狀及應(yīng)用[J].寧夏工程技術(shù),2007,6(1):80-83.
[14]戴起勛,趙玉濤.材料科學(xué)研究方法[M].北京:國(guó)防工業(yè)出版社,2005.
[15]邵立勤.新材料領(lǐng)域未來(lái)發(fā)展方向[J].新材料產(chǎn)業(yè),2004,1:25-30.
[16]自蔓延高溫合成法.材料工藝及應(yīng)用/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm
[17]遠(yuǎn)立賢.金屬/陶瓷功能梯度涂層工藝的應(yīng)用現(xiàn)狀./articleview/2006-6-6/article_view_405.htm.
[18]工程材料./zskj/3021/gccl/CH2/2.6.4.htm.