Journal Title:Memetic Computing
Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems.
The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics:
Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search.
Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand.
Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.
模因被定義為可轉(zhuǎn)移信息的基本單位,存在于大腦中,并通過模仿過程在人群中傳播。從算法的角度來看,模因已被視為先驗知識的構(gòu)建塊,以任意計算表示形式(例如,局部搜索啟發(fā)式、模糊規(guī)則、神經(jīng)模型等)表示,這些先驗知識是通過人類或機器的經(jīng)驗獲得的,并且可以在問題中模仿(即重復(fù)使用)。
《模因計算》雜志歡迎將上述社會文化模因概念納入人工系統(tǒng)的論文,特別強調(diào)通過明確的先驗知識整合來提高計算和人工智能技術(shù)在搜索、優(yōu)化和機器學習方面的有效性。因此,該期刊的目標是成為高質(zhì)量理論和應(yīng)用研究的出口,研究混合的、知識驅(qū)動的計算方法,這些方法可以歸為以下任何一種模因?qū)W類別:
類型 1:通用算法與人為設(shè)計的啟發(fā)式方法相結(jié)合,可以捕獲某種形式的先驗領(lǐng)域知識;例如,將進化全局搜索與特定于問題的局部搜索相結(jié)合的傳統(tǒng)模因算法。
類型 2:能夠從各種可用選項中自動選擇、調(diào)整和重用最合適啟發(fā)式方法的算法;例如,在給定優(yōu)化問題的情況下,學習全局搜索運算符和多個局部搜索方案之間的映射。
類型 3:通過經(jīng)驗自主學習的算法,自適應(yīng)地重用從相關(guān)問題中提取的數(shù)據(jù)和/或機器學習模型作為新目標任務(wù)中的先驗知識;示例包括但不限于遷移學習和優(yōu)化、多任務(wù)學習和優(yōu)化、或任何其他多X進化學習和優(yōu)化方法。
Memetic Computing創(chuàng)刊于2009年,由Springer Berlin Heidelberg出版商出版,收稿方向涵蓋COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE - OPERATIONS RESEARCH & MANAGEMENT SCIENCE全領(lǐng)域,此刊是該細分領(lǐng)域中屬于非常不錯的SCI期刊,在行業(yè)細分領(lǐng)域中學術(shù)影響力較大,專業(yè)度認可很高,所以對原創(chuàng)文章要求創(chuàng)新性較高,如果您的文章質(zhì)量很高,可以嘗試。平均審稿速度 ,影響因子指數(shù)3.3,該期刊近期沒有被列入國際期刊預(yù)警名單,廣大學者值得一試。
大類學科 | 分區(qū) | 小類學科 | 分區(qū) | Top期刊 | 綜述期刊 |
計算機科學 | 2區(qū) | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 OPERATIONS RESEARCH & MANAGEMENT SCIENCE 運籌學與管理科學 | 2區(qū) 2區(qū) | 否 | 否 |
名詞解釋:
中科院分區(qū)也叫中科院JCR分區(qū),基礎(chǔ)版分為13個大類學科,然后按照各類期刊影響因子分別將每個類別分為四個區(qū),影響因子5%為1區(qū),6%-20%為2區(qū),21%-50%為3區(qū),其余為4區(qū)。
大類學科 | 分區(qū) | 小類學科 | 分區(qū) | Top期刊 | 綜述期刊 |
計算機科學 | 3區(qū) | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 OPERATIONS RESEARCH & MANAGEMENT SCIENCE 運籌學與管理科學 | 3區(qū) 3區(qū) | 否 | 否 |
大類學科 | 分區(qū) | 小類學科 | 分區(qū) | Top期刊 | 綜述期刊 |
計算機科學 | 3區(qū) | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 OPERATIONS RESEARCH & MANAGEMENT SCIENCE 運籌學與管理科學 | 3區(qū) 3區(qū) | 否 | 否 |
大類學科 | 分區(qū) | 小類學科 | 分區(qū) | Top期刊 | 綜述期刊 |
工程技術(shù) | 2區(qū) | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 OPERATIONS RESEARCH & MANAGEMENT SCIENCE 運籌學與管理科學 | 3區(qū) 3區(qū) | 否 | 否 |
大類學科 | 分區(qū) | 小類學科 | 分區(qū) | Top期刊 | 綜述期刊 |
計算機科學 | 3區(qū) | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 OPERATIONS RESEARCH & MANAGEMENT SCIENCE 運籌學與管理科學 | 3區(qū) 3區(qū) | 否 | 否 |
大類學科 | 分區(qū) | 小類學科 | 分區(qū) | Top期刊 | 綜述期刊 |
計算機科學 | 3區(qū) | OPERATIONS RESEARCH & MANAGEMENT SCIENCE 運籌學與管理科學 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 | 3區(qū) 4區(qū) | 否 | 否 |
按JIF指標學科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | SCIE | Q2 | 82 / 197 |
58.6% |
學科:OPERATIONS RESEARCH & MANAGEMENT SCIENCE | SCIE | Q2 | 32 / 106 |
70.3% |
按JCI指標學科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | SCIE | Q2 | 86 / 198 |
56.82% |
學科:OPERATIONS RESEARCH & MANAGEMENT SCIENCE | SCIE | Q2 | 38 / 106 |
64.62% |
名詞解釋:
WOS即Web of Science,是全球獲取學術(shù)信息的重要數(shù)據(jù)庫,Web of Science包括自然科學、社會科學、藝術(shù)與人文領(lǐng)域的信息,來自全世界近9,000種最負盛名的高影響力研究期刊及12,000多種學術(shù)會議多學科內(nèi)容。給期刊分區(qū)時會按照某一個學科領(lǐng)域劃分,根據(jù)這一學科所有按照影響因子數(shù)值降序排名,然后平均分成4等份,期刊影響因子值高的就會在高分區(qū)中,最后的劃分結(jié)果分別是Q1,Q2,Q3,Q4,Q1代表質(zhì)量最高。
CiteScore | SJR | SNIP | CiteScore排名 | ||||||||||||
6.8 | 0.945 | 1.1 |
|
名詞解釋:
CiteScore:衡量期刊所發(fā)表文獻的平均受引用次數(shù)。
SJR:SCImago 期刊等級衡量經(jīng)過加權(quán)后的期刊受引用次數(shù)。引用次數(shù)的加權(quán)值由施引期刊的學科領(lǐng)域和聲望 (SJR) 決定。
SNIP:每篇文章中來源出版物的標準化影響將實際受引用情況對照期刊所屬學科領(lǐng)域中預(yù)期的受引用情況進行衡量。
是否OA開放訪問: | h-index: | 年文章數(shù): |
未開放 | 26 | 17 |
Gold OA文章占比: | 2021-2022最新影響因子(數(shù)據(jù)來源于搜索引擎): | 開源占比(OA被引用占比): |
8.64% | 3.3 | 0.07... |
研究類文章占比:文章 ÷(文章 + 綜述) | 期刊收錄: | 中科院《國際期刊預(yù)警名單(試行)》名單: |
100.00% | SCIE | 否 |
歷年IF值(影響因子):
歷年引文指標和發(fā)文量:
歷年中科院JCR大類分區(qū)數(shù)據(jù):
歷年自引數(shù)據(jù):
2023-2024國家/地區(qū)發(fā)文量統(tǒng)計:
國家/地區(qū) | 數(shù)量 |
CHINA MAINLAND | 53 |
Singapore | 10 |
USA | 7 |
England | 6 |
Australia | 5 |
Spain | 5 |
Canada | 4 |
Algeria | 3 |
Mexico | 3 |
Brazil | 2 |
2023-2024機構(gòu)發(fā)文量統(tǒng)計:
機構(gòu) | 數(shù)量 |
NANYANG TECHNOLOGICAL UNIVERSITY... | 9 |
HUAZHONG UNIVERSITY OF SCIENCE &... | 5 |
TAIYUAN UNIVERSITY OF SCIENCE & ... | 4 |
NORTHEASTERN UNIVERSITY - CHINA | 3 |
TSINGHUA UNIVERSITY | 3 |
ZHENGZHOU UNIVERSITY | 3 |
CHINA UNIVERSITY OF GEOSCIENCES | 2 |
CHINESE ACADEMY OF SCIENCES | 2 |
CITY UNIVERSITY OF HONG KONG | 2 |
COMPLUTENSE UNIVERSITY OF MADRID | 2 |
近年引用統(tǒng)計:
期刊名稱 | 數(shù)量 |
IEEE T EVOLUT COMPUT | 51 |
MEMET COMPUT | 44 |
NEUROCOMPUTING | 30 |
INFORM SCIENCES | 18 |
IEEE T NEUR NET LEAR | 15 |
J CLEAN PROD | 15 |
EUR J OPER RES | 14 |
IEEE T CYBERNETICS | 13 |
APPL SOFT COMPUT | 10 |
COMPUT OPER RES | 10 |
近年被引用統(tǒng)計:
期刊名稱 | 數(shù)量 |
MEMET COMPUT | 44 |
IEEE ACCESS | 39 |
SWARM EVOL COMPUT | 34 |
APPL SOFT COMPUT | 26 |
SOFT COMPUT | 17 |
EXPERT SYST APPL | 14 |
MATHEMATICS-BASEL | 14 |
APPL INTELL | 12 |
INT J BIO-INSPIR COM | 12 |
NEURAL COMPUT APPL | 11 |
近年文章引用統(tǒng)計:
文章名稱 | 數(shù)量 |
Moth search algorithm: a bio-ins... | 86 |
Hybrid multi-objective cuckoo se... | 75 |
An improved optimization method ... | 22 |
Solving 0-1 knapsack problems by... | 10 |
A Multi-objective hybrid filter-... | 10 |
Project portfolio selection and ... | 10 |
A decomposition-based chemical r... | 6 |
A fitness approximation assisted... | 6 |
A novel recommendation system in... | 6 |
An improved weighted extreme lea... | 6 |
同小類學科的其他優(yōu)質(zhì)期刊 | 影響因子 | 中科院分區(qū) |
Journal Of Field Robotics | 4.2 | 2區(qū) |
Computer Science Review | 13.3 | 1區(qū) |
Computer Networks | 4.4 | 2區(qū) |
Journal Of Computational Science | 3.1 | 3區(qū) |
Ict Express | 4.1 | 3區(qū) |
Computer Speech And Language | 3.1 | 3區(qū) |
Neurocomputing | 5.5 | 2區(qū) |
Applied Artificial Intelligence | 2.9 | 4區(qū) |
International Journal Of Approximate Reasoning | 3.2 | 3區(qū) |
Iet Software | 1.5 | 4區(qū) |
若用戶需要出版服務(wù),請聯(lián)系出版商:TIERGARTENSTRASSE 17, HEIDELBERG, GERMANY, D-69121。