Journal Title:Australasian Journal Of Combinatorics
The Australasian Journal of Combinatorics is a professional academic journal in the field of combinatorial mathematics. Committed to producing high-quality original research results in the field of combinatorial mathematics, providing a platform for communication and presentation for combinatorial mathematics researchers, and promoting the development of the field of combinatorial mathematics. Research papers in various branches of combinatorial mathematics, including but not limited to combinatorial design, graph theory, counting combinations, combinatorial algorithms, coding theory, discrete geometry, etc. For example, in graph theory, it may involve research on the structure, properties, algorithms, and other aspects of various types of graphs; In the field of combinatorial design, it covers various aspects of design such as construction, existence, and properties.
Has a certain influence in the field of combinatorial mathematics and is of concern to scholars in this field. Their published papers often attract attention and citation from peers, playing a positive role in promoting the theoretical research and application development of combinatorial mathematics. Publishing innovative combinatorial mathematical theoretical achievements or algorithms with significant application value in this journal may provide new ideas and methods for research in related fields, thereby driving further research and development in this field. It has a relatively stable publishing cycle and is regularly published and distributed. Its distribution scope mainly targets combinatorial mathematics research institutions, university libraries, and researchers in related fields worldwide, ensuring that research results can be timely and widely disseminated to the target audience.
《澳大利亞組合學雜志》是組合數(shù)學領域的專業(yè)學術期刊。致力于發(fā)組合數(shù)學領域的高質量原創(chuàng)研究成果,為組合數(shù)學研究者提供一個交流和展示的平臺,推動組合數(shù)學領域的發(fā)展。包括但不限于組合設計、圖論、計數(shù)組合、組合算法、編碼理論、離散幾何等組合數(shù)學的各個分支領域的研究論文。例如,在圖論方面,可能會涉及到各種類型圖的結構、性質、算法等研究;在組合設計領域,會涵蓋各類設計的構造、存在性、性質等內(nèi)容。
在組合數(shù)學領域具有一定的影響力,為該領域的學者們所關注。其發(fā)表的論文往往能引起同行的重視和引用,對推動組合數(shù)學的理論研究和應用發(fā)展起到了積極作用。像一些創(chuàng)新性的組合數(shù)學理論成果或具有重要應用價值的算法等發(fā)表在該期刊上,可能會為相關領域的研究提供新的思路和方法,從而帶動該領域的進一步研究和發(fā)展。它出版周期相對穩(wěn)定,定期出版發(fā)行。其發(fā)行范圍主要面向全球的組合數(shù)學研究機構、高校圖書館以及相關領域的科研人員,確保研究成果能夠及時、廣泛地傳播給目標讀者群體。
Australasian Journal Of Combinatorics由Combinatorial Mathematics Society of Australasia出版商出版,收稿方向涵蓋MATHEMATICS全領域,平均審稿速度 52 Weeks ,影響因子指數(shù)0.4,該期刊近期沒有被列入國際期刊預警名單,廣大學者值得一試。
按JIF指標學科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學科:MATHEMATICS | ESCI | Q4 | 379 / 489 |
22.6% |
按JCI指標學科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學科:MATHEMATICS | ESCI | Q4 | 386 / 489 |
21.17% |
名詞解釋:
WOS即Web of Science,是全球獲取學術信息的重要數(shù)據(jù)庫,Web of Science包括自然科學、社會科學、藝術與人文領域的信息,來自全世界近9,000種最負盛名的高影響力研究期刊及12,000多種學術會議多學科內(nèi)容。給期刊分區(qū)時會按照某一個學科領域劃分,根據(jù)這一學科所有按照影響因子數(shù)值降序排名,然后平均分成4等份,期刊影響因子值高的就會在高分區(qū)中,最后的劃分結果分別是Q1,Q2,Q3,Q4,Q1代表質量最高。
CiteScore | SJR | SNIP | CiteScore排名 | ||||||||
0.8 | 0.359 | 0.701 |
|
名詞解釋:
CiteScore:衡量期刊所發(fā)表文獻的平均受引用次數(shù)。
SJR:SCImago 期刊等級衡量經(jīng)過加權后的期刊受引用次數(shù)。引用次數(shù)的加權值由施引期刊的學科領域和聲望 (SJR) 決定。
SNIP:每篇文章中來源出版物的標準化影響將實際受引用情況對照期刊所屬學科領域中預期的受引用情況進行衡量。
是否OA開放訪問: | h-index: | 年文章數(shù): |
未開放 | -- | 72 |
Gold OA文章占比: | 2021-2022最新影響因子(數(shù)據(jù)來源于搜索引擎): | 開源占比(OA被引用占比): |
0.00% | 0.4 | |
研究類文章占比:文章 ÷(文章 + 綜述) | 期刊收錄: | 中科院《國際期刊預警名單(試行)》名單: |
100.00% | SCIE | 否 |
歷年IF值(影響因子):
歷年引文指標和發(fā)文量:
歷年自引數(shù)據(jù):
若用戶需要出版服務,請聯(lián)系出版商。